Who Should be the Next Math Club President? The Mathematics of Democratic Voting

Darci L. Kracht darci@math.kent.edu
Ohio Epsilon Chapter
Kent State University
PME National Councillor

Richard A. Good Lecture
Pi Mu Epsilon Pennsylvania Upsilon Chapter
Duquesne University
March 21, 2016

How do you become Math Club King, I mean, President?

King Arthur: I am your king.
Peasant Woman: Well, I didn't vote for you.
King Arthur: You don't vote for kings.
Peasant Woman: Well, how'd you become king, then?

- 4 Candidates: Ann, Bob, Cate, Don
- 29 club members vote for their top choice
- Results:

Candidate	Ann	Bob	Cate	Don
\# votes	11	3	8	7
$\%$	37.9%	10.3%	27.6%	24.1%

- Ann is declared the winner using the Plurality Method
- Note that no candidate earns a Majority of votes ($>50 \%$)
- Does this really reflect the will of the people?
- Bob wonders, "How can this be? Everyone I know hates Ann!"
- He suggests the club members vote against their bottom choice
- Results:

Candidate	Ann	Bob	Cate	Don
\# votes against	18	0	0	11
\% against	62.1%	0%	0%	37.9%

- Bob and Cate are tied for president using the Antiplurality Method
- Cate is not happy with the tie

Math Club Election: Plurality with Elimination, Version I

- Cate suggests eliminating Ann and then revoting, removing the candidate with most last-place votes, etc., until one candidate remains
- Easiest to cast ballots with full rankings one time
- Preference Schedule:

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Ann	Cate	Don	Bob	Cate
2nd place	Bob	Bob	Cate	Don	Don
3rd place	Cate	Don	Bob	Cate	Bob
4th place	Don	Ann	Ann	Ann	Ann

- Ann has the most last-place votes, so she is eliminated

Math Club Election: Plurality with Elimination, Version I

- Ann is removed from the ballots and they are recounted
- Results:

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Bob	Cate	Don	Bob	Cate
2nd place	Cate	Bob	Cate	Don	Don
3rd place	Don	Don	Bob	Cate	Bob

- Now Don has the most last-place votes (18), so he is eliminated

Math Club Election: Plurality with Elimination, Version I

- Don is removed from the ballots and they are recounted
- Results:

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Bob	Cate	Cate	Bob	Cate
2nd place	Cate	Bob	Bob	Cate	Bob

- Now Bob has the most last-place votes (15), so he is eliminated and Cate is the winner!

Math Club Election: Plurality with Elimination, Version II

- Not so fast, says Don
- Instead of eliminating the candidate with the most last-place votes, we should eliminate the one with the fewest first-place votes
- Here that would be Bob with only 3 first-place votes

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Ann	Cate	Don	Bob	Cate
2nd place	Bob	Bob	Cate	Don	Don
3rd place	Cate	Don	Bob	Cate	Bob
4th place	Don	Ann	Ann	Ann	Ann

Math Club Election: Plurality with Elimination, Version II

- Remove Bob from the ballots and recount
- Results:

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Ann	Cate	Don	Don	Cate
2nd place	Cate	Don	Cate	Cate	Don
3rd place	Don	Ann	Ann	Ann	Ann

- Now Cate has fewest first-place votes (8)

Math Club Election: Plurality with Elimination, Version II

- Remove Cate from the ballots and recount
- Results:

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Ann	Don	Don	Don	Don
2nd place	Don	Ann	Ann	Ann	Ann

- Now Ann has fewest first-place votes (11), so she is eliminated and Don is the winner!
- This method is sometimes called Instant Run-Off Voting (IRV)

Math Club Election: Borda Count

- Bob suggests using a point system.

	pts/vote	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	$\mathbf{3}$	Ann	Cate	Don	Bob	Cate
2nd place	$\mathbf{2}$	Bob	Bob	Cate	Don	Don
3rd place	$\mathbf{1}$	Cate	Don	Bob	Cate	Bob
4th place	$\mathbf{0}$	Don	Ann	Ann	Ann	Ann

- Ann: $11 \times 3=33$
- Bob: $(3 \times 3)+(18 \times 2)+(8 \times 1)=53$
- Cate: $(8 \times 3)+(7 \times 2)+(14 \times 1)=52$
- Don: $(7 \times 3)+(4 \times 2)+(7 \times 1)=36$
- So Bob is the winner!

Math Club Election: Pairwise Comparisons

- Cate notes that she would beat each of the other candidates in a head-to-head contest

\# voters	$\mathbf{1 1}$	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{3}$	$\mathbf{1}$
1st place	Ann	Cate	Don	Bob	Cate
2nd place	Bob	Bob	Cate	Don	Don
3rd place	Cate	Don	Bob	Cate	Bob
4th place	Don	Ann	Ann	Ann	Ann

- Cate beats Ann 18 to 11
- Cate beats Bob 15 to 14
- Cate beats Don 19 to 10
- Cate is therefore a Condorcet Winner

Math Club Election

"It's not the voting that's democracy, it's the counting.'

\author{

- Dotty, in Tom Stoppard's play Jumpers
}

The crux of the matter:
How do we aggregate individual voters' preferences to produce a societal preference in the fairest way possible?

What is "fair"?

Fairness Criteria: The Majority Criterion

Definition (The Majority Criterion.)

If a candidate receives a majority ($>50 \%$) of the first-place votes, that candidate should be a winner of the election.

- Violated by Borda Count

	pts/vote	$\mathbf{3}$	$\mathbf{2}$
1st place	$\mathbf{2}$	A	B
2nd place	$\mathbf{1}$	B	C
3rd place	$\mathbf{0}$	C	A

- A: $(3 \times 2)=6$
- B: $(2 \times 2)+(3 \times 1)=7$
- $C:(2 \times 1)=2$
- A has a majority, but B wins under Borda Count

Fairness Criteria: The Condorcet Criterion

Definition (The Condorcet Criterion.)

If a candidate beats each other candidate in a pairwise comparison, that candidate should be a winner of the election.

- Violated by Plurality, Instant Run-Off Voting, and Borda Count
- Cate was Condorcet Candidate in Math Club Election, but lost using Plurality, Instant Run-off Voting, and Borda Count

Definition (The Monotonicity Criterion.)

If candidate X is a winner, then X should remain a winner if a voter moves X (and only X) up on his/her ballot.

- Violated by Instant Run-Off Voting

	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{2}$
1st place	A	B	C	A
2nd place	B	C	A	C
3rd place	C	A	B	B

- C wins: B is eliminated in the first round and B's 8 votes get transferred to C (who now has 18/27)
- Now suppose the last two voters want to vote for the winner (C), so they change their votes, moving C up

Definition (The Monotonicity Criterion.)

If candidate X is a winner, then X should remain a winner if a voter moves X (and only X) up on his/her ballot.

- Now suppose the last two voters want to vote for the winner (C), so they change their votes, moving C up

	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{2}$
1st place	A	B	C	C
2nd place	B	C	A	A
3rd place	C	A	B	B

- B wins: A is eliminated in the first round and A's 7 votes get transferred to B, who beats $C 15$ to 12 .

Definition (Independence of Irrelevant Alternatives Criterion.) If candidate X is a winner, then X should remain a winner if any of the irrelevant (losing) candidates drops out of the race.

- All of the voting methods we've seen violate the Independence of Irrelevant Alternatives Criterion!

Definition (Transitivity)

If I prefer P to R and R to S, it is reasonable to assume I prefer P to S. (Write $P>R>S$)

- Suppose there are two other voters with transitive preferences $R>S>P$ and $S>P>R$
- Preference schedule:

\# voters	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
1st place	Paper	Rock	Scissors
2nd place	Rock	Scissors	Paper
3rd place	Scissors	Paper	Rock

- This is a tie, but it's worse than that- it's a Cycle.
- Pairwise comparison rankings are Intransitive
- $(P>R)$: Paper beats Rock 2 to 1
- $(R>S)$: Rock beats Scissors 2 to 1
- $(S>R)$: Scissors beats Paper 2 to 1

Arrow's Impossibility Theorem

Theorem (Arrow's Impossibility Theorem)
Any transitive voting method that satisfies all of these fairness criteria is a dictatorship.

Conclusions

Count de Money: Your majesty, it is said that the people are revolting.
King Louis XVI: You said it. They stink on ice!

Pi Mu Epsilon Pennsylvania Upsilon Chapter-Duquesne University

The Society's Goals:

- To elect members on an honorary basis according to their proficiency in mathematics
- To promote activities that enhance the mathematical and scholarly development of its members
- Founded at Syracuse University on December 8th, 1913
- Named using Greek letters stemming from the Greek words for scholarship (Pi), mathematics (Mu), and promotion (Epsilon)
- Incorporated on May 25th, 1914. Re-incorporated in 1988.
- A national society comprised of local chapters at colleges and universities.
- Currently there are 389 chapters in 48 states and the District of Columbia. (Missing: Wyoming and Hawaii)
- Each chapter is designated by its own Greek Letter and a chapter number.
- The Pennsylvania Upsilon Chapter (chapter 287) was chartered at Duquesne University in 1999

The Society Council

- Angela Spalsbury, Ohio Xi at Youngstown State University (President)
- Paul Fishback, Michigan lota at Grand Valley State University (President-Elect)
- Eve Torrence, Virginia lota at Randolph-Macon College (Past-President)
- Stephanie Edwards, Michigan Delta at Hope College (Secretary-Treasurer)
- Brigitte Servatius, Massachusetts Alpha at Worcester Polytechnic Institute (Journal Editor)
- Councilors
- Chad Awtrey, North Carolina Nu at Elon University
- Jennifer Beineke, Massachusetts Kappa at Western New England University
- Darci Kracht, Ohio Epsilon at Kent State University
- Ben Ntatin, Tennessee Epsilon at Austin Peay University

Activities of the National Organization

Financial support for various organizations:

- American Mathematics Competitions
- American Regional Mathematics League
- Mathematical Association of America (MAA) National Meeting Poster Session

Activities of the National Organization

Chapter Grants:

- Matching Prize Grants (\$100)
- Matching Conference Grants (\$300)
- Richard A. Good Lectureship Grants (\$500)

Activities of the National Organization

The Pi Mu Epsilon Journal

- Published in the fall and spring of each year
- Cash prizes for student-authored articles
"This award had a MAJOR impact on my vision for a research career." Robert Devaney, Boston University, MAA Past-President

The 2016 National Pi Mu Epsilon Conference

in conjunction with MAA MathFest 2016

> August 3-6
> Columbus, OH

PME-MAA Opening Student Reception

Student Presentations at the National PME Meeting

Fifteen-minute talks may be expository on material most undergraduates have not seen in their classrooms or on new research accomplished while an undergraduate.

Student Presentations at the National PME Meeting

Sample titles from previous conferences:

- Computational Models of Congressional Redistricting
- Exploring Leibniz's Infinitesimals
- Integer Compositions Applied to the Probability Analysis of Blackjack and Infinite Deck Assumption
- A Quantitative Analysis of SIR-type Malaria Models
- Mathematical Manipulatives from 3D Printing
- Using Independent Bernoulli Random Variables to Model Gender Hiring Practices

Activities Sponsored by the Mathematical Association of America

- Math Jeopardy
- Zombies and Calculus: A Survival Guide, Colin Adams, Williams College
- Games Mathematicians Play, Christopher Swanson, Ashland University
- Panel Session: Non-Academic Mathematical Career Paths for Undergraduates
- Estimathon!
- Student Poster Sessions and Other Undergraduate Activities

Pi Mu Epsilon Banquet and Awards Ceremony

Awards for Student Talks at the National PME Meeting

Talks are judged, and cash prizes (\$150) are awarded by several professional organizations:

- The American Mathematics Society
- The MAA Special Interest Groups on Mathematical Biology and Environmental Mathematics
- The American Statistical Association
- The Society for Industrial and Applied Mathematics
- Budapest Semesters in Mathematics

2016 J. Sutherland Frame Lecture

Professor Robin Wilson, Open University
Combinatorics-The Mathematics That Counts

- PME provides transportation support for up to 5 student speakers from each Chapter: up to $\$ 600$ per student with a $\$ 1200$ per Chapter maximum.
- An NSA grant provides a stipend to help defray lodging and food expenses. (in 2014: $\$ 380$ each)
- Almost all PME student speakers receive travel and sustenance grants.
- For further details, see www.pme-math.org/apply-for-funding.

2014 Student Speakers

Student Survey Comments

- "MathFest is an excellent opportunity to expand your mathematical knowledge, meet distinguished mathematicians, and learn about careers in your field. It was a wonderful and fun experience and you should definitely participate."
- "I would tell students that they should participate and give a talk. It has been a memorable and great experience that will help me in several ways in the future."

The Meaning of the Shield:

The Pi Mu Epsilon Pledge:

I solemnly promise
that I will exert my best efforts to promote true scholarship, particularly in mathematics, and that I will support the objectives of the Pi Mu Epsilon Honor Society.

