Applications of the Artin-Hasse Exponential Series and its Generalizations to Finite Algebra Groups

Darci L. Kracht
darci@math.kent.edu
Advisor: Stephen M. Gagola, Jr.
Kent State University

November 2, 2011

Algebra groups

Definition

Let F be a field of characteristic p and order q. Let J be a finite-dimensional, nilpotent, associative F-algebra. Define $G=1+J$ (formally). Then G is a finite p-group. Groups of this form are called F-algebra groups. We will assume this notation throughout.

Algebra groups

Definition

Let F be a field of characteristic p and order q. Let J be a finite-dimensional, nilpotent, associative F-algebra. Define $G=1+J$ (formally). Then G is a finite p-group. Groups of this form are called F-algebra groups. We will assume this notation throughout.

Example

Unipotent upper-triangular matrices over F

Algebra groups

Definition

Let F be a field of characteristic p and order q. Let J be a finite-dimensional, nilpotent, associative F-algebra. Define $G=1+J$ (formally). Then G is a finite p-group. Groups of this form are called F-algebra groups. We will assume this notation throughout.

Example

Unipotent upper-triangular matrices over F

Theorem (Isaacs (1995))

All irreducible characters of algebra groups have q-power degree.

Algebra subgroups and strong subgroups

- Subgroups: $1+X$ where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x+y+x y$

Algebra subgroups and strong subgroups

- Subgroups: $1+X$ where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x+y+x y$
- X need not be an algebra.

Algebra subgroups and strong subgroups

- Subgroups: $1+X$ where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x+y+x y$
- X need not be an algebra.

Definitions

- If L is a subalgebra of J, then $1+L$ is an algebra subgroup of $G=1+J$.

Algebra subgroups and strong subgroups

- Subgroups: $1+X$ where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x+y+x y$
- X need not be an algebra.

Definitions

- If L is a subalgebra of J, then $1+L$ is an algebra subgroup of $G=1+J$.
- If $H \leq G$ such that $|H \cap K|$ is a q-power for all algebra subgroups K of G, then H is a strong subgroup of G.

Algebra subgroups and strong subgroups

- Subgroups: $1+X$ where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x+y+x y$
- X need not be an algebra.

Definitions

- If L is a subalgebra of J, then $1+L$ is an algebra subgroup of $G=1+J$.
- If $H \leq G$ such that $|H \cap K|$ is a q-power for all algebra subgroups K of G, then H is a strong subgroup of G.

Fact

Algebra subgroups are strong.

Strong subgroup example

Example

The subgroup

$$
H=\left\{\left.\left(\begin{array}{ccc}
1 & \alpha & \binom{\alpha}{2} \\
0 & 1 & \alpha \\
0 & 0 & 1
\end{array}\right) \right\rvert\, \alpha \in F\right\}
$$

is a strong subgroup (but not an algebra subgroup) of the algebra group of unipotent 3×3 upper-triangular matrices over F.
(Here $\binom{\alpha}{2}=\frac{\alpha(\alpha-1)}{2}$ is the generalized binomial coefficient.)

Strong subgroups as point stabilizers

Theorem (Isaacs (1995))

Under certain conditions, character stabilizers are strong.

Strong subgroups as point stabilizers

Theorem (Isaacs (1995))

Under certain conditions, character stabilizers are strong.

- If $J^{p}=0, N \unlhd G$ is an ideal subgroup, and $\theta \in \operatorname{lrr}(N)$, then the stabilizer in G of θ is strong.
- If $N \unlhd G$ is an ideal subgroup, and λ is a linear character of N, then the stabilizer in G of λ is strong.

Strong subgroups as point stabilizers

Theorem (Isaacs (1995))

Under certain conditions, character stabilizers are strong.

- If $J^{p}=0, N \unlhd G$ is an ideal subgroup, and $\theta \in \operatorname{Irr}(N)$, then the stabilizer in G of θ is strong.
- If $N \unlhd G$ is an ideal subgroup, and λ is a linear character of N, then the stabilizer in G of λ is strong.

Question

Are normalizers of algebra subgroups strong?

When $J^{p}=0$: The Exponential Map

- If $J^{p}=0$, define $\exp : J \rightarrow 1+J$ and $\log : 1+J \rightarrow J$ by the usual power series.

When $J^{p}=0$: The Exponential Map

- If $J^{p}=0$, define exp $: J \rightarrow 1+J$ and $\log : 1+J \rightarrow J$ by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1+x)^{\alpha}=\exp (\alpha \log (1+x))$.

When $J^{p}=0$: The Exponential Map

- If $J^{p}=0$, define exp $: J \rightarrow 1+J$ and $\log : 1+J \rightarrow J$ by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1+x)^{\alpha}=\exp (\alpha \log (1+x))$.
- We define an F-exponent subgroup to be a subgroup of the following form:
- $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$

When $J^{p}=0$: The Exponential Map

- If $J^{p}=0$, define exp : $J \rightarrow 1+J$ and $\log : 1+J \rightarrow J$ by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1+x)^{\alpha}=\exp (\alpha \log (1+x))$.
- We define an F-exponent subgroup to be a subgroup of the following form:
- $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$
or equivalently
- $\exp (F \hat{x})=\{\exp (\alpha \hat{x}) \mid \alpha \in F\}$

When $J^{P}=0$: The Exponential Map

- If $J^{p}=0$, define $\exp : J \rightarrow 1+J$ and $\log : 1+J \rightarrow J$ by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1+x)^{\alpha}=\exp (\alpha \log (1+x))$.
- We define an F-exponent subgroup to be a subgroup of the following form:
- $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$
or equivalently
- $\exp (F \hat{x})=\{\exp (\alpha \hat{x}) \mid \alpha \in F\}$

Fact

F-exponent subgroups are strong.

Exponentially closed subgroups

Definition

The subgroup H is said to be exponentially closed if $\exp (F x) \subseteq H$ whenever $\exp (x) \in H$.

Exponentially closed subgroups

Definition

The subgroup H is said to be exponentially closed if $\exp (F x) \subseteq H$ whenever $\exp (x) \in H$.

- Also called partitioned subgroups

Exponentially closed subgroups

Definition

The subgroup H is said to be exponentially closed if $\exp (F x) \subseteq H$ whenever $\exp (x) \in H$.

- Also called partitioned subgroups

Fact

Exponentially closed subgroups are strong.

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H=\exp (L)$ be an algebra subgroup of G.

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H=\exp (L)$ be an algebra subgroup of G.
- To show: if $\exp (x) \in N_{G}(H)$, then $\exp (\alpha x) \in N_{G}(H)$ for all $\alpha \in F$.

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H=\exp (L)$ be an algebra subgroup of G.
- To show: if $\exp (x) \in N_{G}(H)$, then $\exp (\alpha x) \in N_{G}(H)$ for all $\alpha \in F$.
- Key: $N_{G}(H)=\exp N_{J}(L)$ where $N_{J}(L)=\{x:[L, x] \subseteq L\}$.

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H=\exp (L)$ be an algebra subgroup of G.
- To show: if $\exp (x) \in N_{G}(H)$, then $\exp (\alpha x) \in N_{G}(H)$ for all $\alpha \in F$.
- Key: $N_{G}(H)=\exp N_{J}(L)$ where $N_{J}(L)=\{x:[L, x] \subseteq L\}$.

$$
y^{(\exp x)^{-1}}=y^{\exp (-x)}=\exp (\operatorname{ad} x)(y)
$$

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H=\exp (L)$ be an algebra subgroup of G.
- To show: if $\exp (x) \in N_{G}(H)$, then $\exp (\alpha x) \in N_{G}(H)$ for all $\alpha \in F$.
- Key: $N_{G}(H)=\exp N_{J}(L)$ where $N_{J}(L)=\{x:[L, x] \subseteq L\}$.
- $y^{(\exp x)^{-1}}=y^{\exp (-x)}=\exp (\operatorname{ad} x)(y)$.
- $\exp (x) \in N_{G}(H) \Longleftrightarrow \exp (\operatorname{ad} x)$ stabilizes L

Normalizers of algebra subgroups when $J^{p}=0$

Theorem

Suppose $J^{p}=0$. If H is an algebra subgroup of $G=1+J$, then $N_{G}(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H=\exp (L)$ be an algebra subgroup of G.
- To show: if $\exp (x) \in N_{G}(H)$, then $\exp (\alpha x) \in N_{G}(H)$ for all $\alpha \in F$.
- Key: $N_{G}(H)=\exp N_{J}(L)$ where $N_{J}(L)=\{x:[L, x] \subseteq L\}$.
- $y^{(\exp x)^{-1}}=y^{\exp (-x)}=\exp (\operatorname{ad} x)(y)$.
- $\exp (x) \in N_{G}(H) \Longleftrightarrow \exp (\operatorname{ad} x)$ stabilizes L \Longleftrightarrow ad x stabilizes L

A generalization of the exponential map.

Goal

To find an analog of \exp that works if $x^{p} \neq 0$.

A generalization of the exponential map.

Goal

To find an analog of \exp that works if $x^{p} \neq 0$.

- From the study of Witt rings and p-adic analysis:

A generalization of the exponential map.

Goal

To find an analog of \exp that works if $x^{p} \neq 0$.

- From the study of Witt rings and p-adic analysis:

Definition

Fix a prime p and a nilpotent algebra X over a field of characteristic 0 .

A generalization of the exponential map.

Goal

To find an analog of \exp that works if $x^{p} \neq 0$.

- From the study of Witt rings and p-adic analysis:

Definition

Fix a prime p and a nilpotent algebra X over a field of characteristic 0 . The Artin-Hasse exponential series, $\mathrm{E}_{\mathrm{p}}: X \rightarrow 1+X$, is defined by

$$
\begin{aligned}
\mathrm{E}_{\mathrm{p}}(x) & =\exp \left(x+\frac{x^{p}}{p}+\frac{x^{p^{2}}}{p^{2}}+\frac{x^{p^{3}}}{p^{3}}+\cdots\right) \\
& =\exp (x) \exp \left(\frac{x^{p}}{p}\right) \exp \left(\frac{x^{p^{2}}}{p^{2}}\right) \exp \left(\frac{x^{p^{3}}}{p^{3}}\right) \cdots
\end{aligned}
$$

Another formula for E_{p}

Miracle

The coefficients in $\mathrm{E}_{\mathrm{p}}(x)$ are p-integral.

Another formula for E_{p}

Miracle

The coefficients in $\mathrm{E}_{\mathrm{p}}(x)$ are p-integral.
Sketch of proof.

- $E_{p}(x)=\sum \frac{\left|\cup \operatorname{Syl}_{p}\left(S_{n}\right)\right|}{n!} x^{n}$

Another formula for E_{p}

Miracle

The coefficients in $\mathrm{E}_{\mathrm{p}}(x)$ are p-integral.
Sketch of proof.

- $\mathrm{E}_{\mathrm{p}}(x)=\sum \frac{\left|\cup \mathrm{Syl}_{p}\left(S_{n}\right)\right|}{n!} x^{n}$
- Frobenius: The highest power of p that divides $n!=\left|S_{n}\right|$ also divides $\left|\cup S y l_{p}\left(S_{n}\right)\right|$.

Another formula for E_{p}

Miracle

The coefficients in $\mathrm{E}_{\mathrm{p}}(x)$ are p-integral.
Sketch of proof.

- $\mathrm{E}_{\mathrm{p}}(x)=\sum \frac{\left|\cup \mathrm{Syl}_{p}\left(S_{n}\right)\right|}{n!} x^{n}$
- Frobenius: The highest power of p that divides $n!=\left|S_{n}\right|$ also divides $\left|\cup S y l_{p}\left(S_{n}\right)\right|$.
- E_{p} makes sense in characteristic p

E_{p} lacks some nice properties of exp

- Suppose $x y=y x$. Then $\exp (x) \exp (y)=\exp (x+y)$.
E_{p} lacks some nice properties of exp
- Suppose $x y=y x$. Then $\exp (x) \exp (y)=\exp (x+y)$.
- Does $\mathrm{E}_{\mathrm{p}}(x) \mathrm{E}_{\mathrm{p}}(y)=\mathrm{E}_{\mathrm{p}}(x+y)$?
E_{p} lacks some nice properties of exp
- Suppose $x y=y x$. Then $\exp (x) \exp (y)=\exp (x+y)$.
- Does $\mathrm{E}_{\mathrm{p}}(x) \mathrm{E}_{\mathrm{p}}(y)=\mathrm{E}_{\mathrm{p}}(x+y)$?
- Not usually:

$$
\begin{aligned}
& \left(\exp \left(x+\frac{x^{p}}{p}+\frac{x^{p^{2}}}{p^{2}}+\cdots\right)\right)\left(\exp \left(y+\frac{y^{p}}{p}+\frac{y^{p^{2}}}{p^{2}}+\cdots\right)\right) \neq \\
& \left(\exp \left((x+y)+\frac{(x+y)^{p}}{p}+\frac{(x+y)^{p^{2}}}{p^{2}}+\cdots\right)\right)
\end{aligned}
$$

E_{p} lacks some nice properties of exp

- Suppose $x y=y x$. Then $\exp (x) \exp (y)=\exp (x+y)$.
- Does $\mathrm{E}_{\mathrm{p}}(x) \mathrm{E}_{\mathrm{p}}(y)=\mathrm{E}_{\mathrm{p}}(x+y)$?
- Not usually:

$$
\begin{aligned}
& \left(\exp \left(x+\frac{x^{p}}{p}+\frac{x^{p^{2}}}{p^{2}}+\cdots\right)\right)\left(\exp \left(y+\frac{y^{p}}{p}+\frac{y^{p^{2}}}{p^{2}}+\cdots\right)\right) \neq \\
& \left(\exp \left((x+y)+\frac{(x+y)^{p}}{p}+\frac{(x+y)^{p^{2}}}{p^{2}}+\cdots\right)\right)
\end{aligned}
$$

- We have

$$
\begin{aligned}
\mathrm{E}_{\mathrm{p}}(x) \mathrm{E}_{\mathrm{p}}(y) & =\mathrm{E}_{\mathrm{p}}\left(S_{0}\right) \mathrm{E}_{\mathrm{p}}\left(S_{1}\right) \mathrm{E}_{\mathrm{p}}\left(S_{2}\right) \cdots \\
\text { where } S_{0} & =x+y \\
S_{1} & =\frac{x^{p}+y^{p}-(x+y)^{p}}{p}
\end{aligned}
$$

and the remaining polynomials S_{n} can be shown to have p-integral coefficients.

\mathcal{E}_{p}^{F} and AH -closed subgroups

Definitions

- Define $\mathcal{E}_{p}^{F}=\mathrm{E}_{\mathrm{p}}(F x) \mathrm{E}_{\mathrm{p}}\left(F^{p}\right) \mathrm{E}_{\mathrm{p}}\left(F X^{p^{2}}\right) \cdots$.

\mathcal{E}_{p}^{F} and AH -closed subgroups

Definitions

- Define $\mathcal{E}_{p}^{F}=\mathrm{E}_{\mathrm{p}}(F x) \mathrm{E}_{\mathrm{p}}\left(F_{x}^{p}\right) \mathrm{E}_{\mathrm{p}}\left(F x^{p^{2}}\right) \cdots$.
- A subgroup H is said to be $A H$-closed if $\mathrm{E}_{\mathrm{p}}(\gamma x) \in H$ for all $\gamma \in F$ whenever $\mathrm{E}_{\mathrm{p}}(x) \in H$.

\mathcal{E}_{p}^{F} and AH -closed subgroups

Definitions

- Define $\mathcal{E}_{p}^{F}=\mathrm{E}_{\mathrm{p}}(F x) \mathrm{E}_{\mathrm{p}}\left(F^{p}\right) \mathrm{E}_{\mathrm{p}}\left(F x^{p^{2}}\right) \cdots$.
- A subgroup H is said to be $A H$-closed if $\mathrm{E}_{\mathrm{p}}(\gamma x) \in H$ for all $\gamma \in F$ whenever $\mathrm{E}_{\mathrm{p}}(x) \in H$.

Facts

- \mathcal{E}_{p}^{F} and $A H$-closed subgroups are strong.

\mathcal{E}_{p}^{F} and AH -closed subgroups

Definitions

- Define $\mathcal{E}_{p}^{F}=\mathrm{E}_{\mathrm{p}}(F x) \mathrm{E}_{\mathrm{p}}\left(F_{x^{p}}\right) \mathrm{E}_{\mathrm{p}}\left(F_{x^{p^{2}}}\right) \cdots$.
- A subgroup H is said to be $A H$-closed if $\mathrm{E}_{\mathrm{p}}(\gamma x) \in H$ for all $\gamma \in F$ whenever $\mathrm{E}_{\mathrm{p}}(x) \in H$.

Facts

- \mathcal{E}_{p}^{F} and $A H$-closed subgroups are strong.
- \mathcal{E}_{p}^{F} is not necessarily $A H$-closed.

\mathcal{E}_{p}^{F} and AH -closed subgroups

Definitions

- Define $\mathcal{E}_{p}^{F}=\mathrm{E}_{\mathrm{p}}(F x) \mathrm{E}_{\mathrm{p}}\left(F^{p}\right) \mathrm{E}_{\mathrm{p}}\left(F x^{p^{2}}\right) \cdots$.
- A subgroup H is said to be AH-closed if $\mathrm{E}_{\mathrm{p}}(\gamma x) \in H$ for all $\gamma \in F$ whenever $\mathrm{E}_{\mathrm{p}}(x) \in H$.

Facts

- \mathcal{E}_{p}^{F} and $A H$-closed subgroups are strong.
- \mathcal{E}_{p}^{F} is not necessarily $A H$-closed.
- If $J^{2 p-1}=0$, then $\mathcal{E}_{p}^{F}=\mathrm{E}_{\mathrm{p}}(F x) \mathrm{E}_{\mathrm{p}}\left(F^{p}\right)$ is AH-closed.

E_{p} and normalizers.

Question

Can we use the map E_{p} to show normalizers of algebra subgroups are strong?

E_{p} and normalizers.

Question

Can we use the map E_{p} to show normalizers of algebra subgroups are strong?

Answer
 Only if $\mathrm{J}^{p+1}=0$.

E_{p} and normalizers.

Question

Can we use the map E_{p} to show normalizers of algebra subgroups are strong?

Answer
 Only if $\mathrm{J}^{p+1}=0$.

Theorem

Let H be an algebra subgroup of $G=1+J$.

- If $J^{p+1}=0$, then $N_{G}(H)$ is AH-closed (hence strong).

E_{p} and normalizers.

Question

Can we use the map E_{p} to show normalizers of algebra subgroups are strong?

Answer

Only if $\mathrm{J}^{p+1}=0$.

Theorem

Let H be an algebra subgroup of $G=1+J$.

- If $J^{p+1}=0$, then $N_{G}(H)$ is AH-closed (hence strong).
- If $J^{p+1} \neq 0$, then examples exist for which $\left|N_{G}(H)\right|=p \cdot q^{a}$, and so $N_{G}(H)$ need not be strong.

Sketch of proof

- We find a function had analogous to ad so that $\mathrm{E}_{\mathrm{p}}(x) \in N_{G}(H)$ $\Longleftrightarrow \mathrm{E}_{\mathrm{p}}(\mathrm{had} x)$ stabilizes L

Sketch of proof

- We find a function had analogous to ad so that $\mathrm{E}_{\mathrm{p}}(x) \in N_{G}(H)$ $\Longleftrightarrow \mathrm{E}_{\mathrm{p}}($ had $x)$ stabilizes $L \Longleftrightarrow$ had x stabilizes L

Sketch of proof

- We find a function had analogous to ad so that $\mathrm{E}_{\mathrm{p}}(x) \in N_{G}(H)$ $\Longleftrightarrow \mathrm{E}_{\mathrm{p}}(\operatorname{had} x)$ stabilizes $L \Longleftrightarrow$ had x stabilizes L
- had $x=\operatorname{ad} x+\vartheta$ where ϑ is not linear

Sketch of proof

- We find a function had analogous to ad so that $\mathrm{E}_{\mathrm{p}}(x) \in N_{G}(H)$ $\Longleftrightarrow \mathrm{E}_{\mathrm{p}}(\operatorname{had} x)$ stabilizes $L \Longleftrightarrow$ had x stabilizes L
- had $x=\operatorname{ad} x+\vartheta$ where ϑ is not linear
- If $J^{2 p-1}=0, \vartheta=\frac{L_{x}^{p}-R_{x}^{p}-\left(L_{x}-R_{x}\right)^{p}}{p}$, where L_{x}, R_{x} are left and right multiplication by x, respectively.

Sketch of proof

- We find a function had analogous to ad so that $E_{p}(x) \in N_{G}(H)$ $\Longleftrightarrow \mathrm{E}_{\mathrm{p}}(\operatorname{had} x)$ stabilizes $L \Longleftrightarrow$ had x stabilizes L
- had $x=\operatorname{ad} x+\vartheta$ where ϑ is not linear
- If $J^{2 p-1}=0, \vartheta=\frac{L_{x}^{p}-R_{x}^{p}-\left(L_{x}-R_{x}\right)^{p}}{p}$, where L_{x}, R_{x} are left and right multiplication by x, respectively.
- $\vartheta(y) \in J^{p+1}$

Sketch of proof

- We find a function had analogous to ad so that $\mathrm{E}_{\mathrm{p}}(x) \in N_{G}(H)$ $\Longleftrightarrow \mathrm{E}_{\mathrm{p}}(\operatorname{had} x)$ stabilizes $L \Longleftrightarrow$ had x stabilizes L
- had $x=\operatorname{ad} x+\vartheta$ where ϑ is not linear
- If $J^{2 p-1}=0, \vartheta=\frac{L_{x}^{p}-R_{x}^{p}-\left(L_{x}-R_{x}\right)^{p}}{p}$, where L_{x}, R_{x} are left and right multiplication by x, respectively.
- $\vartheta(y) \in J^{p+1}$
- $J^{p+1}=0 \Longrightarrow$
- had $x=\operatorname{ad} x$
- had x stabilizes $L \Longleftrightarrow$ had (αx) stabilizes L for all $\alpha \in F$
- $N_{G}(H)$ is AH-closed (hence strong)

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
- $\mathrm{E}_{\mathrm{p}}(\alpha x) \in N_{G}(H) \Longleftrightarrow \operatorname{had}(\alpha x)=\alpha \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
- $\mathrm{E}_{\mathrm{p}}(\alpha x) \in N_{G}(H) \Longleftrightarrow \operatorname{had}(\alpha x)=\alpha \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L
- Now had $x=\operatorname{ad} x+\vartheta$ stabilizes L α^{p} had $x=\alpha^{p}(\operatorname{ad} x+\vartheta)=\alpha^{p} \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L for all α.

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
- $\mathrm{E}_{\mathrm{p}}(\alpha x) \in N_{G}(H) \Longleftrightarrow \operatorname{had}(\alpha x)=\alpha \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L
- Now had $x=\operatorname{ad} x+\vartheta$ stabilizes L $\alpha^{p} \operatorname{had} x=\alpha^{p}(\operatorname{ad} x+\vartheta)=\alpha^{p} \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L for all α.
- So had (αx) stabilizes $L \Longleftrightarrow\left(\alpha^{p}-\alpha\right)$ ad x stabilizes L

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
- $\mathrm{E}_{\mathrm{p}}(\alpha x) \in N_{G}(H) \Longleftrightarrow \operatorname{had}(\alpha x)=\alpha \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L
- Now had $x=\operatorname{ad} x+\vartheta$ stabilizes L $\alpha^{p} \operatorname{had} x=\alpha^{p}(\operatorname{ad} x+\vartheta)=\alpha^{p} \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L for all α.
- So had (αx) stabilizes $L \Longleftrightarrow\left(\alpha^{p}-\alpha\right)$ ad x stabilizes L
- Examples exist (for all p) for which this happens $\Longleftrightarrow \alpha \in G F(p)$ and so $\left|N_{G}(H)\right|=p \cdot q^{a}$.

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
- $\mathrm{E}_{\mathrm{p}}(\alpha x) \in N_{G}(H) \Longleftrightarrow \operatorname{had}(\alpha x)=\alpha \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L
- Now had $x=\operatorname{ad} x+\vartheta$ stabilizes L $\alpha^{p} \operatorname{had} x=\alpha^{p}(\operatorname{ad} x+\vartheta)=\alpha^{p} \operatorname{ad} x+\alpha^{p} \vartheta$ stabilizes L for all α.
- So had (αx) stabilizes $L \Longleftrightarrow\left(\alpha^{p}-\alpha\right)$ ad x stabilizes L
- Examples exist (for all p) for which this happens $\Longleftrightarrow \alpha \in G F(p)$ and so $\left|N_{G}(H)\right|=p \cdot q^{a}$.
- So if $J^{p+1} \neq 0$ and $|F|=q>p$, examples exist for which normalizers of algebra subgroups are not strong.

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$
- $x \in J$ with $x^{p}=0$ but $x^{2} \neq 0$

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$
- $x \in J$ with $x^{p}=0$ but $x^{2} \neq 0$
- $\epsilon: F \rightarrow F$ is a nonzero additive map with $\epsilon(1)=0$

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$
- $x \in J$ with $x^{p}=0$ but $x^{2} \neq 0$
- $\epsilon: F \rightarrow F$ is a nonzero additive map with $\epsilon(1)=0$
- $H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}$

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$
- $x \in J$ with $x^{p}=0$ but $x^{2} \neq 0$
- $\epsilon: F \rightarrow F$ is a nonzero additive map with $\epsilon(1)=0$
- $H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}$

Then

- H is an abelian subgroup of G of order q

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$
- $x \in J$ with $x^{p}=0$ but $x^{2} \neq 0$
- $\epsilon: F \rightarrow F$ is a nonzero additive map with $\epsilon(1)=0$
- $H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}$

Then

- H is an abelian subgroup of G of order q
- $1+x \in H$ since $\epsilon(1)=0$

Intersections of strong subgroups need not be strong.

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

- $q>p>2$
- $x \in J$ with $x^{p}=0$ but $x^{2} \neq 0$
- $\epsilon: F \rightarrow F$ is a nonzero additive map with $\epsilon(1)=0$
- $H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}$

Then

- H is an abelian subgroup of G of order q
- $1+x \in H$ since $\epsilon(1)=0$
- H is strong, as we will show.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.
- I.e., $\left(1+\alpha_{0} x+\cdots\right)\left(1+\epsilon\left(\alpha_{0}\right) x^{2}+\cdots\right) \in 1+\boldsymbol{A}$

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.
- I.e., $\left(1+\alpha_{0} x+\cdots\right)\left(1+\epsilon\left(\alpha_{0}\right) x^{2}+\cdots\right) \in 1+A$
- So $\alpha_{0} x+\cdots \in A$

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.
- I.e., $\left(1+\alpha_{0} x+\cdots\right)\left(1+\epsilon\left(\alpha_{0}\right) x^{2}+\cdots\right) \in 1+A$
- So $\alpha_{0} x+\cdots \in A$
- This generates the algebra $x F[x]$, so $x F[x] \subseteq A$.
$H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.
- I.e., $\left(1+\alpha_{0} x+\cdots\right)\left(1+\epsilon\left(\alpha_{0}\right) x^{2}+\cdots\right) \in 1+A$
- So $\alpha_{0} x+\cdots \in A$
- This generates the algebra $x F[x]$, so $x F[x] \subseteq A$.
- So $H \cap(1+A)=H$.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.
- I.e., $\left(1+\alpha_{0} x+\cdots\right)\left(1+\epsilon\left(\alpha_{0}\right) x^{2}+\cdots\right) \in 1+A$
- So $\alpha_{0} x+\cdots \in A$
- This generates the algebra $x F[x]$, so $x F[x] \subseteq A$.
- So $H \cap(1+A)=H$.
- Therefore, \forall algebra subgroups K of $G, H \cap K=1$ or $H \cap K=H$

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap(1+A) \neq 1$.
- Then $\exists \alpha_{0} \in F, \alpha_{0} \neq 0$ such that $(1+x)^{\alpha_{0}}\left(1+x^{2}\right)^{\epsilon\left(\alpha_{0}\right)} \in 1+A$.
- I.e., $\left(1+\alpha_{0} x+\cdots\right)\left(1+\epsilon\left(\alpha_{0}\right) x^{2}+\cdots\right) \in 1+A$
- So $\alpha_{0} x+\cdots \in A$
- This generates the algebra $x F[x]$, so $x F[x] \subseteq A$.
- So $H \cap(1+A)=H$.
- Therefore, \forall algebra subgroups K of $G, H \cap K=1$ or $H \cap K=H$
- Conclude: H is a strong subgroup of G.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

- A strong subgroup of G of order q.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

- A strong subgroup of G of order q.
- Distinct from H since ϵ is not the zero map.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

- A strong subgroup of G of order q.
- Distinct from H since ϵ is not the zero map.

Then we have

- $1+x \in(1+x)^{F} \cap H$.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

- A strong subgroup of G of order q.
- Distinct from H since ϵ is not the zero map.

Then we have

- $1+x \in(1+x)^{F} \cap H$.
- So $1<\left|(1+x)^{F} \cap H\right|<q$.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

- A strong subgroup of G of order q.
- Distinct from H since ϵ is not the zero map.

Then we have

- $1+x \in(1+x)^{F} \cap H$.
- So $1<\left|(1+x)^{F} \cap H\right|<q$.
- Thus, $(1+x)^{F} \cap H$ is not strong.

$$
H=\left\{(1+x)^{\alpha}\left(1+x^{2}\right)^{\epsilon(\alpha)} \mid \alpha \in F\right\}
$$

Now consider the F-exponent group $(1+x)^{F}=\left\{(1+x)^{\alpha} \mid \alpha \in F\right\}$:

- A strong subgroup of G of order q.
- Distinct from H since ϵ is not the zero map.

Then we have

- $1+x \in(1+x)^{F} \cap H$.
- So $1<\left|(1+x)^{F} \cap H\right|<q$.
- Thus, $(1+x)^{F} \cap H$ is not strong.
- Conclude: the intersection of strong subgroups need not be strong.

Ideal frames

Definition

Let J be a nilpotent F-algebra with $\operatorname{dim}_{F}(J)=n$. An ideal frame of J is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of J satisfying

$$
v_{i} J, J v_{i} \subseteq \operatorname{Span}\left\{v_{i+1}, \ldots, v_{n}\right\}
$$

for all $i=1, \ldots, n$.

Ideal frames

Definition

Let J be a nilpotent F-algebra with $\operatorname{dim}_{F}(J)=n$. An ideal frame of J is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of J satisfying

$$
v_{i} J, J v_{i} \subseteq \operatorname{Span}\left\{v_{i+1}, \ldots, v_{n}\right\}
$$

for all $i=1, \ldots, n$.

Such bases always exist. For example,

Ideal frames

Definition

Let J be a nilpotent F-algebra with $\operatorname{dim}_{F}(J)=n$. An ideal frame of J is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of J satisfying

$$
v_{i} J, J v_{i} \subseteq \operatorname{Span}\left\{v_{i+1}, \ldots, v_{n}\right\}
$$

for all $i=1, \ldots, n$.

Such bases always exist. For example,
-Refine the chain $J \supset J^{2} \supset \cdots \supset J^{m-1} \supset J^{m}=0$ to a maximal flag $J=V_{1} \supset V_{2} \supset \cdots \supset V_{n-1} \supset V_{n} \supset 0$.

Ideal frames

Definition

Let J be a nilpotent F-algebra with $\operatorname{dim}_{F}(J)=n$. An ideal frame of J is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of J satisfying

$$
v_{i} J, J v_{i} \subseteq \operatorname{Span}\left\{v_{i+1}, \ldots, v_{n}\right\}
$$

for all $i=1, \ldots, n$.

Such bases always exist. For example,
-Refine the chain $J \supset J^{2} \supset \cdots \supset J^{m-1} \supset J^{m}=0$ to a maximal flag $J=V_{1} \supset V_{2} \supset \cdots \supset V_{n-1} \supset V_{n} \supset 0$.

- Choose $v_{i} \in V_{i} \backslash V_{i+1}$ for all $i=1, \ldots, n$.

Ideal frames

Definition

Let J be a nilpotent F-algebra with $\operatorname{dim}_{F}(J)=n$. An ideal frame of J is a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of J satisfying

$$
v_{i} J, J v_{i} \subseteq \operatorname{Span}\left\{v_{i+1}, \ldots, v_{n}\right\}
$$

for all $i=1, \ldots, n$.

Such bases always exist. For example,
-Refine the chain $J \supset J^{2} \supset \cdots \supset J^{m-1} \supset J^{m}=0$ to a maximal flag $J=V_{1} \supset V_{2} \supset \cdots \supset V_{n-1} \supset V_{n} \supset 0$.

- Choose $v_{i} \in V_{i} \backslash V_{i+1}$ for all $i=1, \ldots, n$.
- Then $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J.

Stringent power series

Definition

We call a power series $J \rightarrow 1+J$ stringent if it is of the form

$$
x \mapsto 1+x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\cdots
$$

where $\alpha_{2}, \alpha_{3}, \ldots \in F$.

Stringent power series

Definition

We call a power series $J \rightarrow 1+J$ stringent if it is of the form

$$
x \mapsto 1+x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\cdots
$$

where $\alpha_{2}, \alpha_{3}, \ldots \in F$.

Example

$\exp (x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ is stringent.

Stringent power series

Definition

We call a power series $J \rightarrow 1+J$ stringent if it is of the form

$$
x \mapsto 1+x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\cdots
$$

where $\alpha_{2}, \alpha_{3}, \ldots \in F$.

Example

$\exp (x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ is stringent.
Let $\sigma: J \rightarrow 1+J$ be a stringent power series.

Stringent power series

Definition

We call a power series $J \rightarrow 1+J$ stringent if it is of the form

$$
x \mapsto 1+x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\cdots
$$

where $\alpha_{2}, \alpha_{3}, \ldots \in F$.

Example

$\exp (x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ is stringent.
Let $\sigma: J \rightarrow 1+J$ be a stringent power series.

- Then $\sigma(\alpha x)^{-1}=1-\alpha x+\cdots$.

Stringent power series

Definition

We call a power series $J \rightarrow 1+J$ stringent if it is of the form

$$
x \mapsto 1+x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\cdots
$$

where $\alpha_{2}, \alpha_{3}, \ldots \in F$.

Example

$\exp (x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ is stringent.
Let $\sigma: J \rightarrow 1+J$ be a stringent power series.

- Then $\sigma(\alpha x)^{-1}=1-\alpha x+\cdots$.
- Define $\sigma(F x)=\{\sigma(\alpha x) \mid \alpha \in F\}$.

Stringent power series

Definition

We call a power series $J \rightarrow 1+J$ stringent if it is of the form

$$
x \mapsto 1+x+\alpha_{2} x^{2}+\alpha_{3} x^{3}+\cdots
$$

where $\alpha_{2}, \alpha_{3}, \ldots \in F$.

Example

$\exp (x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ is stringent.
Let $\sigma: J \rightarrow 1+J$ be a stringent power series.

- Then $\sigma(\alpha x)^{-1}=1-\alpha x+\cdots$.
- Define $\sigma(F x)=\{\sigma(\alpha x) \mid \alpha \in F\}$.
- $\sigma\left(F_{X}\right)$ is a subset, but not necessarily a subgroup, of G.

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

Then

- $1+V_{i}=\sigma\left(F v_{i}\right)\left(1+V_{i+1}\right)$ for all $i=1, \ldots, n-1$;

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

Then

- $1+V_{i}=\sigma\left(F v_{i}\right)\left(1+V_{i+1}\right)$ for all $i=1, \ldots, n-1$;
- Every element of G has a unique representation of the form $\sigma\left(\alpha_{1} v_{1}\right) \sigma\left(\alpha_{2} v_{2}\right) \cdots \sigma\left(\alpha_{n} v_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n} \in F$.

Expressing elements of G in terms of $\sigma(F x)$

Lemma

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

Then

- $1+V_{i}=\sigma\left(F v_{i}\right)\left(1+V_{i+1}\right)$ for all $i=1, \ldots, n-1$;
- Every element of G has a unique representation of the form $\sigma\left(\alpha_{1} v_{1}\right) \sigma\left(\alpha_{2} v_{2}\right) \cdots \sigma\left(\alpha_{n} v_{n}\right)$ where $\alpha_{1}, \ldots, \alpha_{n} \in F$.
- In particular, $G=\prod_{i=1}^{n} \sigma\left(F v_{i}\right)$.

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

If H is a strong subgroup of G, then there exist

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

If H is a strong subgroup of G, then there exist

- a partition $I \dot{U} \hat{I}=\{1, \ldots, n\}$

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

If H is a strong subgroup of G, then there exist

- a partition $I \dot{U} \hat{I}=\{1, \ldots, n\}$
- functions $\epsilon_{i j}: F \rightarrow F$ for all $i \in I$ and $j \in \hat{l}$ with $j>i$

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

If H is a strong subgroup of G, then there exist

- a partition $I \dot{U} \hat{I}=\{1, \ldots, n\}$
- functions $\epsilon_{i j}: F \rightarrow F$ for all $i \in I$ and $j \in \hat{l}$ with $j>i$
such that, $\forall \alpha \in F, h_{i}(\alpha)=\sigma\left(\alpha v_{i}\right) \prod_{j \in \hat{I}} \sigma\left(\epsilon_{i j}(\alpha) v_{j}\right)$ is an element of H.
$j>i$

Description of strong subgroups

Theorem

For a finite F-algebra group $G=1+J$, suppose

- $\left\{v_{1}, \ldots, v_{n}\right\}$ is an ideal frame of J where $n=\operatorname{dim}_{F}(J)$
- $\sigma: J \rightarrow 1+J$ is a stringent power series
- $V_{i}=\operatorname{Span}\left\{v_{i}, \ldots, v_{n}\right\}$.

If H is a strong subgroup of G, then there exist

- a partition $I \dot{U} \hat{I}=\{1, \ldots, n\}$
- functions $\epsilon_{i j}: F \rightarrow F$ for all $i \in I$ and $j \in \hat{l}$ with $j>i$
such that, $\forall \alpha \in F, h_{i}(\alpha)=\sigma\left(\alpha v_{i}\right) \prod_{j \in \hat{I}} \sigma\left(\epsilon_{i j}(\alpha) v_{j}\right)$ is an element of H.
Moreover, every $h \in H$ has a unique representation of the form $h=\prod_{i \in I} h_{i}\left(\alpha_{i}\right)$ where $\alpha_{i} \in F$.

Example

Suppose H is a strong subgroup of $G+1+J$ where $J^{p}=0, \operatorname{dim}_{F}(J)=6$, $\sigma(\alpha x)=(1+x)^{\alpha}$, and the partition given by the theorem turns out to be $I=\{1,3,5\}$ and $\hat{I}=\{2,4,6\}$.

Example

Suppose H is a strong subgroup of $G+1+J$ where $J^{p}=0, \operatorname{dim}_{F}(J)=6$, $\sigma(\alpha x)=(1+x)^{\alpha}$, and the partition given by the theorem turns out to be $I=\{1,3,5\}$ and $\hat{I}=\{2,4,6\}$.

Then there are functions $\epsilon_{1,2}, \epsilon_{1,4}, \epsilon_{1,6}, \epsilon_{3,4}, \epsilon_{3,6}, \epsilon_{5,6}: F \rightarrow F$ so that

$$
\begin{aligned}
& h_{1}\left(\alpha_{1}\right)=\left(1+v_{1}\right)^{\alpha_{1}}\left(1+v_{2}\right)^{\epsilon_{1,2}\left(\alpha_{1}\right)}\left(1+v_{4}\right)^{\epsilon_{1,4}\left(\alpha_{1}\right)}\left(1+v_{6}\right)^{\epsilon_{1,6}\left(\alpha_{1}\right)} \\
& h_{3}\left(\alpha_{3}\right)=\left(1+v_{3}\right)^{\alpha_{3}}\left(1+v_{4}\right)^{\epsilon_{3,4}\left(\alpha_{3}\right)}\left(1+v_{6}\right)^{\epsilon_{3,6}\left(\alpha_{3}\right)} \\
& h_{5}\left(\alpha_{5}\right)=\left(1+v_{5}\right)^{\alpha_{5}}\left(1+v_{6}\right)^{\epsilon_{5,6}\left(\alpha_{5}\right)}
\end{aligned}
$$

are all elements of H.

Example

Suppose H is a strong subgroup of $G+1+J$ where $J^{p}=0, \operatorname{dim}_{F}(J)=6$, $\sigma(\alpha x)=(1+x)^{\alpha}$, and the partition given by the theorem turns out to be $I=\{1,3,5\}$ and $\hat{I}=\{2,4,6\}$.

Then there are functions $\epsilon_{1,2}, \epsilon_{1,4}, \epsilon_{1,6}, \epsilon_{3,4}, \epsilon_{3,6}, \epsilon_{5,6}: F \rightarrow F$ so that

$$
\begin{aligned}
& h_{1}\left(\alpha_{1}\right)=\left(1+v_{1}\right)^{\alpha_{1}}\left(1+v_{2}\right)^{\epsilon_{1,2}\left(\alpha_{1}\right)}\left(1+v_{4}\right)^{\epsilon_{1,4}\left(\alpha_{1}\right)}\left(1+v_{6}\right)^{\epsilon_{1,6}\left(\alpha_{1}\right)} \\
& h_{3}\left(\alpha_{3}\right)=\left(1+v_{3}\right)^{\alpha_{3}}\left(1+v_{4}\right)^{\epsilon_{3,4}\left(\alpha_{3}\right)}\left(1+v_{6}\right)^{\epsilon_{3,6}\left(\alpha_{3}\right)} \\
& h_{5}\left(\alpha_{5}\right)=\left(1+v_{5}\right)^{\alpha_{5}}\left(1+v_{6}\right)^{\epsilon_{5,6}\left(\alpha_{5}\right)}
\end{aligned}
$$

are all elements of H.
Moreover, every $h \in H$ is of the form $h=h_{1}\left(\alpha_{1}\right) h_{3}\left(\alpha_{3}\right) h_{5}\left(\alpha_{5}\right)$ for unique $\alpha_{1}, \alpha_{3}, \alpha_{5} \in F$.

