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CHAPTER 1

INTRODUCTION AND MOTIVATION

In this chapter, we establish the context for the main results of this dissertation. Let F be

a field of characteristic p and order q. Let R be a finite-dimensional associative F-algebra

and J � JpRq the Jacobson radical of R. (So J is a finite-dimensional, nilpotent, associative

F-algebra.) If G � 1� J, then G is a finite p-group. Groups of this form are called F-algebra

groups, or simply, algebra groups. (We will assume this notation throughout this chapter.)

A family of examples is provided by the upper-triangular n� n matrices over F, for

a fixed positive integer n. The Jacobson radical, J, of the algebra of all such matrices is

the set of strictly upper-triangular matrices over F. Thus, G � 1� J is the set of unipotent

upper-triangular matrices, those with 1’s along the main diagonal, often denoted UTnpFq.

The subgroups of G � 1� J are of the form 1� X, where X is a subset of J closed under

the operation

px, yq ÞÑ x� y� xy. (1.1)

In particular, X need not be an algebra. On the other hand, if L is a subalgebra of J, then L

is certainly closed under (1.1). In this case, we call 1� L an algebra subgroup of G. If H ¤ G

such that |H X K| is a q-power for all algebra subgroups K of G, then we say H is a strong

subgroup of G.

Since algebra subgroups have q-power order and since the collection of algebra sub-

groups of G is closed under intersection, it follows that algebra subgroups are strong.

1
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However, the converse is not true. For example, the subgroup

H �
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is a strong subgroup but not an algebra subgroup of the algebra group UT3pFq for p ¡ 2.

Here
�
α
2

�
� αpα�1q

2 and, more generally, for k an integer with 0   k   p andα P F,

�
α

k



�
αpα� 1q � � � pα� k� 1q

k!

denotes the generalized binomial coefficient.

Algebra groups and related notions were introduced by Isaacs (1995) to solve a long-

standing problem about the character degrees� of the upper-triangular matrix groups.

Strong subgroups played a key role in Isaacs’s proof of that result.

In the same paper, Isaacs showed that certain inertia subgroups of characters of algebra

groups are strong (Theorems 6.1 and 8.3). An inertia subgroup is the stabilizer of a point

under the action of the group by conjugation on the set of irreducible characters of a normal

subgroup. Of course, a group G also acts on its subgroups by conjugation. Recall that the

stabilizer of a subgroup H under this action is known as the normalizer of H, denoted

NGpHq. That is,

NGpHq � tg P G : Hg � Hu.

In light of the results of Isaacs about character stabilizers, it is natural to ask if normalizers

of algebra subgroups of algebra groups are strong. This is the question considered in

Chapter 4. The tools used to answer the question will be power series.

The first of these is the exponential series. If x P J with xp � 0, then the usual exponential

�A character is a type of function from a group to a field, in this case, the field C of complex numbers. A
character degree is the value of a certain type of character, called irreducible, at the identity of the group. There is
an extensive literature on group characters and character degrees.
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series

exp x � 1� x�
x2

2!
�

x3

3!
� � � �

is defined, since it terminates before any division by zero. In fact, if Jp � 0, exp defines a

bijection J Ñ 1� J with inverse log : 1� J Ñ J given by the Mercator series

logp1� xq � x�
x2

2
�

x3

3
� � � � ,

for x P J.

For x P J with xp � 0 and α P F, define p1� xqα � exp pα logp1� xqq P G, or equiva-

lently,

p1� xqα � 1�αx�
�
α

2



x2 �

�
α

3



x3 � � � � .

If we define p1� xqF by

p1� xqF � tp1� xqα : α P Fu ,

then p1� xqF is a subgroup of G, called an F-exponent subgroup. More is true.

Proposition 1.1. If x P J with xp � 0, then p1� xqF is a subgroup of G containing 1� x. If x � 0,

then p1� xqF is isomorphic to the additive group of F. Moreover, distinct F-exponent subgroups

intersect trivially. Finally, every algebra subgroup of G of exponent p is the union of its distinct

F-exponent subgroups.

Proof. This is Corollary 5.2 of (Isaacs, 1995).

Notice that if we define exppFx̂q � texppαx̂q : α P Fu, then p1 � xqF � exppFx̂q for

x̂ � logp1 � xq, so we may denote F-exponent subgroups by p1 � xqF or by exppFx̂q, as

convenient.

Let H be a subgroup of G of exponent p. We say H is exponentially closed if exppFxq � H

whenever exppxq P H. Isaacs (1995) called these subgroups partitioned subgroups because

they are equally partitioned in the sense defined in (Isaacs, 1973). It follows from Proposition
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1.1 that F-exponent subgroups and algebra subgroups of exponent p are exponentially

closed and that the intersection of exponentially closed subgroups is itself exponentially

closed.

The next result is central to §4.1, where we give an affirmative answer to the question

about normalizers in the case where Jp � 0.

Proposition 1.2. If G is an algebra group, then every exponentially closed subgroup of G is strong.

Proof. This is Lemma 5.3 of (Isaacs, 1995).

The notions of F-exponent and exponentially closed subgroups are of limited use in an

algebra group whose exponent exceeds its characteristic. Therefore, we set out to generalize

these ideas using different power series. In fact, other power series have been used in

similar circumstances. Character degree results analogous to those of Isaacs (1995) but for

other classical matrix groups were given by Previtali (1995). He used the power series

σpxq � x�
a

1� x2 � x�
8̧

k�0

p�1qk�1

22k�1 Ck�1x2k,

where Cn �
1

n�1

�2n
n

�
P Z: is the n-th Catalan number for n ¥ 0 and C�1 � � 1

2 . This series

is defined in odd characteristic only, but these results were known to be false for p � 2,

anyway. Previtali obtained his results about character degrees by using this power series

to show that certain sections of the groups are strong. Previtali (1999) later used truncated

exponential series to prove similar results for sizes of certain conjugacy classes in classical

groups.

For our purposes, we wanted a power series, or family of power series, that could be

used in any characteristic and in algebra groups of arbitrarily large exponent. The truncated

exponential series do not have the properties we need. Fortunately, there is a generalization

of the exponential series called the Artin-Hasse exponential series that suits our purpose,

:As usual, Z denotes the set of all integers and Q denotes the set of all rational numbers.
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found in the number theory literature. In Chapter 2, we provide the background material

needed to prove that the Artin-Hasse exponential series has the desired properties. This

includes some elementary results about the ring of Witt vectors. In Chapter 3, we develop

analogs of F-exponent subgroups and exponentially closed subgroups for the Artin-Hasse

exponential series. In Chapter 4, we use these tools to show when normalizers of algebra

subgroups are strong and when there are counter-examples.

As we have seen, strong subgroups play an important role in the results of Isaacs (1995)

and Previtali (1995) about character degrees in classical groups. More recently, André (2010)

has obtained similar results in a more general setting by showing that certain fixed-point

subgroups are strong. These results as well as our results in Chapter 4 motivate the study

of strong subgroups in Chapter 5. Here again, we use power series, but this time the series

can be much more general.



CHAPTER 2

WITT VECTORS AND THE ARTIN-HASSE EXPONENTIAL SERIES

In this chapter, we provide the background needed to develop the Artin-Hasse exponen-

tial series. In §2.1, we define Witt vectors and prove that they form a ring. In §2.2, we define

the p-adic Artin-Hasse exponential series Ep and prove that its coefficients are p-integral.

2.1 Witt vectors

The purpose of this section is to develop needed aspects of the theory of Witt vectors

that, though elementary, might not be familiar to the reader. The approach is based in large

part on Hazewinkel (2009). While proofs have been elaborated, definitions and statements

of results have been streamlined for the present setting. In particular, the current treatment

is entirely formula-based. However, the theory can be developed in greater generality

and with greater sophistication via category theory. (See, for example, Hazewinkel (2009),

Lenstra (2002), and Rabinoff (2007).)

Fix p, a prime. Let X � pX0, X1, X2, . . .q, where the Xi are commuting indeterminates.

The (p-adic) Witt polynomials are defined to be

w0pXq � X0,

w1pXq � Xp
0 � pX1,

w2pXq � Xp2

0 � pXp
1 � p2X2,

...

wnpXq � Xpn

0 � pXpn�1

1 � � � � � pnXn,

...

6
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In this context, we define the weight of the indeterminate Xi to be pi and the weight of Xp j

i to

be pi p j � pi� j. The weight of a monomial is the sum of the weights of its indeterminates. A

polynomial all of whose monomials have the same weight pk is said to be isobaric of weight

pk. Thus, the n-th Witt polynomial, wn, is isobaric of weight pn.

Let A be a commutative ring with identity, equipped with the discrete topology�. Define

WpAq �
8¹

i�0

A and (for l � 0, 1, 2, . . .) WlpAq �
l¹

i�0

A.

For each nonnegative integer l, consider the surjective homomorphisms Wl�1pAq Ñ WlpAq

given by

pa0, a1, . . . , al , al�1q ÞÑ pa0, a1, . . . , alq,

and WpAq Ñ WlpAq given by

pa0, a1, . . . , al , al�1, . . .q ÞÑ pa0, a1, . . . , alq.

Since these homomorphisms are mutually compatible, there is a natural homomorphism

WpAq Ñ lim
ÐÝ

WlpAq, the inverse limit. In fact, this is an isomorphism. Thus, we may view

WpAq as being endowed with the inverse limit topology, the coarsest topology in which all

these maps are continuous.

The main goal of this section is to put a ring structure on WpAq and each WlpAq so

the Witt polynomials are (continuous) ring homomorphisms from any of these products

to A. Since this is possible, WpAq is called the ring of (p-adic) Witt vectors and WlpAq is

called the ring of (p-adic) Witt vectors of length l.: The i-th component, ai, of the element

a � pa0, a1, a2, . . .q of WpAq (or WlpAq) is called the i-th Witt component of a, while the value

wnpaq P A is called the n-th ghost component of a.

�References to topology will be brief and safely ignored by the reader.
:These rings are sometimes called simply Witt rings, but this term usually refers to an entirely different ring.

Also, the Witt vectors are actually ring elements, although they look like vectors. If A is an algebra, then so are
WpAq and WlpAq, and so the Witt vectors really are vectors in that case.
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All Witt vectors considered here are p-adic Witt vectors. Although only finite-length

Witt vectors will be needed, it is convenient to develop the theory for Witt vectors of infinite

length.

Lemma 2.1. LetψpXq � ψpX0, X1, . . .q be a polynomial in commuting indeterminates with integer

coefficients. Write ψpXpq � ψpXp
0 , Xp

1 , . . .q. Then

(a) ψpXpq � ψpXqp mod p;

(b) ψpXpqp j
� ψpXqp j�1

mod p j�1.

Proof. For the first part, writeψpXq � M0 � M1 � � � � � Mn�1 � Mn, where M0, . . . , Mn are

monomials in the Xi. It follows that

ψpXqp � rpM0 � M1 � � � � � Mn�1q � Mns
p

� pM0 � M1 � � � � � Mn�1q
p � Mp

n mod p

since the middle terms are all congruent to zero modulo p by the Binomial Theorem. So by

induction,

ψpXqp � Mp
0 � Mp

1 � � � � � Mp
n�1 � Mp

n mod p.

Now each monomial M is of the form M � cXe1
i1

Xe2
i2
� � �Xek

ik
, where Xi j P tX0, X1, . . .u, e j P Z�,

and c is an integer (by hypothesis). So

Mp � cpXpe1
i1

Xpe2
i2

� � �Xpek
ik

� cXpe1
i1

Xpe2
i2

� � �Xpek
ik

mod p

since cp � c mod p by Fermat’s Little Theorem. Part (a) follows, forming the base step of

an inductive argument for the second part.

For the inductive step, assume

ψpXpqp j�1
� ψpXqp j

mod p j.
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That is, there exists a polynomial θpXq with integer coefficients such that

ψpXpqp j�1
� ψpXqp j

� p jθpXq.

Therefore,

ψpXpqp j
�

�
ψpXqp j

� p jθpXq
�p

� ψpXqp j�1
� pψpXqp j

p jθpXq � � � � � pp jqpθpXqp

� ψpXqp j�1
� p j�1θ̂pXq

� ψpXqp j�1
mod p j�1,

where θ̂pXq is a polynomial with integer coefficients. This proves part (b).

The following theorem is the key to most of the properties of Witt vectors we will need.

Theorem 2.2 (“The miracle of the Witt polynomials”). Let φpU, Vq be a polynomial over

the integers in two commuting indeterminates. Let X � pX0, X1, . . .q and Y � pY0, Y1, . . .q be

commuting indeterminates. Then for n � 0, 1, . . ., there are unique polynomials

φnpX; Yq � φnpX0, . . . , Xn; Y0, . . . , Ynq

having integer coefficients such that, for all n,

wnpφ0pX; Yq,φ1pX; Yq, . . . ,φnpX; Yqq � φpwnpXq, wnpYqq. (2.1)

Proof. The miracle is that the coefficients are all integers; existence and uniqueness of theφn

as polynomials over the rational numbers is evident once the notation is sorted out. Indeed,

for n � 0,

w0pφ0pX; Yqq � φpw0pX0q, w0pY0qq,

φ0pX; Yq � φpX0, Y0q.
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When n � 1,

w1pφ0pX; Yq,φ1pX; Yqq � φpw1pX0, X1q, w1pY0, Y1qq,

φ0pX; Yqp � pφ1pX; Yq � φpXp
0 � pX1, Yp

0 � pY1q,

φ1pX; Yq �
1
p
�
φpXp

0 � pX1, Yp
0 � pY1q �φ0pX; Yqp� .

Similarly, φnpX; Yq lies in the algebra over Z
�

1
p

�
� Q generated by φ and φ0, . . . ,φn�1.

Sinceφ is integral, so isφ0. Now supposeφ0, . . . ,φn�1 are all integral. When equation (2.1)

is expanded, the term pnφnpX; Yq on the left-hand side is the only term containingφnpX; Yq.

Hence, the coefficients ofφnpX; Yq are all rational numbers whose denominators divide pn.

Next, compare

wnpXq � Xpn

0 � pXpn�1

1 � � � � � pn�1Xp
n�1 � pnXn

with

wn�1pXpq �
�
Xp

0

�pn�1

� p
�
Xp

1

�pn�2

� � � � � pn�1 �Xp
n�1

�1

� Xpn

0 � pXpn�1

1 � � � � � pn�1Xp
n�1

to conclude

wnpXq � wn�1pXpq mod pn.

It follows that

φpwnpXq, wnpYqq � φpwn�1pXpq, wn�1pYpqq mod pn. (2.2)

Now the left-hand side of (2.2) is

φpwnpXq, wnpYqq � wnpφ0pX; Yq,φ1pX; Yq, . . . ,φn�1pX; Yq,φnpX; Yqq

� φ0pX; Yqpn
� � � � � pn�1φn�1pX; Yqp � pnφnpX; Yq.
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The right-hand side of (2.2) is

φpwn�1pXpq, wn�1pYpqq � wn�1pφ0pXp; Ypq,φ1pXp; Ypq, . . . ,φn�1pXp; Ypqq

� φ0pXp; Ypqpn�1
� � � � � pn�1φn�1pXp; Ypq.

By Lemma 2.1, for 0 ¤ i ¤ n� 1,

φn�ipX; Yqpi
� φn�ipXp; Ypqpi�1

mod pi

and so

pn�iφn�ipX; Yqpi
� pn�iφn�ipXp; Ypqpi�1

mod pn.

Thus, the 0-th through pn � 1q-st terms of the left-hand side of (2.2) are term-for-term

congruent to the terms of the right-hand side. There is an additional term on the left-hand

side, and so,

pnφnpX; Yq � 0 mod pn.

Therefore, the coefficients ofφnpX; Yq must in fact be integers.

Note that ifφpU, Vq is homogeneous of degree r and if, as usual, Xi and Yi have weight

pi (for 0 ¤ i ¤ n), then equation (2.1) implies thatφnpX, Yq is isobaric of weight rpn. Also

note that essentially the same proof as above would work if φ were a polynomial (or

even a formal power series) in any number of commuting indeterminates. Versions for

polynomials in one, two, and three indeterminates will be used in the proof of Theorem 2.6

below. Finally, since theφi are polynomials over Z, they are universal in the sense that the

same polynomials will work over any ring A with identity.

Let A be an arbitrary ring with identity. The ring operations in WpAq and WlpAq will be

defined in terms of addition and multiplication polynomials. As usual, X � pX0, X1, . . .q and

Y � pY0, Y1, . . .q denote commuting indeterminates. For n P t0, 1, . . .u, define the (p-adic)
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Witt addition polynomials sn � snpX0, . . . , Xn; Y0, . . . , Ynq and the (p-adic) Witt multiplication

polynomials mn � mnpX0, . . . , Xn; Y0, . . . , Ynq by

wnpsq � wnpXq �wnpYq (2.3)

and wnpmq � wnpXqwnpYq,

where s � ps0, s1, . . .q and m � pm0, m1, . . .q. It is not difficult to compute the first few

addition polynomials explicitly. Indeed, when n � 0,

w0psq � w0pXq �w0pYq,

s0 � X0 �Y0.

For n � 1,

w1psq � w1pXq �w1pYq,

sp
0 � ps1 � Xp

0 � pX1 �Yp
0 � pY1,

pX0 �Y0q
p � ps1 � Xp

0 �Yp
0 � ppX1 �Y1q.

Solving for s1, we obtain

s1 �
Xp

0 �Yp
0 � pX0 �Y0q

p

p
� pX1 �Y1q (2.4)

� X1 �Y1 �

p�1̧

i�1

1
p

�
p
i



Xp�i

0 Yi
0 .

From this it is apparent that s0 and s1, at least, have integer coefficients. Similarly, it is easy

to see that m0 and m1 are integral by computing them directly from the ghost component

equations. However, it is even easier to show that all the sn and mn are integral using

Theorem 2.2, which we now do.

Corollary 2.3. The Witt addition and Witt multiplication polynomials exist, are unique, and

have integer coefficients. Moreover, snpX; Yq � snpY; Xq and mnpX; Yq � mnpY; Xq for all
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X � pX0, X1, . . .q, Y � pY0, Y1, . . .q, and n P t0, 1, . . .u. Finally, snpX; Yq is isobaric of weight pn

and mnpX; Yq is isobaric of weight 2pn.

Proof. Apply Theorem 2.2 to SpU, Vq � U � V for the addition polynomials and to

MpU, Vq � UV for the multiplication polynomials. Since SpU, Vq � U � V � V �U

and the sn are unique, it follows that snpX; Yq � snpY; Xq. Similarly, MpU, Vq � UV � VU

implies mnpX; Yq � mnpY; Xq. The statement about the weights is a consequence of the

remark immediately following the proof of Theorem 2.2.

Now let a � pa0, a1, . . .q, b � pb0, b1, . . .q P WpAq (or WlpAqq. Define Witt addition ` and

Witt multiplication b by

a` b � ps0pa0; b0q, s1pa0, a1; b0, b1q, . . .q

and ab b � pm0pa0; b0q, m1pa0, a1; b0, b1q, . . .q.

These operations are clearly not the usual component-wise operations on the tuples.

However, in the special case where the elements a and b have disjoint support (that is, for

all i, ai � 0 or bi � 0), a` b reduces to component-wise addition.

Proposition 2.4. If a � pa0, a1, . . .q, b � pb0, b1, . . .q P WpAq (or WlpAq) have disjoint support,

then a` b � pa0 � b0, a1 � b1, . . .q.

Proof. By universality of the Witt addition polynomials, it suffices to prove the lemma for

A � Z. Suppose a � pa0, a1, . . .q, b � pb0, b1, . . .q P WpZq (or WlpZq) have disjoint support.

For i P t0, 1, . . .u, set

ci � ai � bi �

$'''&
'''%

ai if ai � 0;

bi if ai � 0.

We wish to show a` b � pc0, c1, . . .q.

Proceed by (strong) induction on the index of the component of the sum. For the base

step, note that s0pa0; b0q � a0 � b0. Next, suppose the first n� 1 components of the sum



14

are a0 � b0, a1 � b1, . . . , an�1 � bn�1, that is, c0, c1, . . . , cn�1. Consider the ghost component

equation

wnpspa; bqq � wnpaq �wnpbq, (2.5)

spn

0 � � � � � pn�1sp
n�1 � pnsn �

�
apn

0 � � � � � pn�1ap
n�1 � pnan

	
�
�

bpn

0 � � � � � pn�1bp
n�1 � pnbn

	
�

�
apn

0 � bpn

0

	
� � � � �

�
pn�1ap

n�1 � pn�1bp
n�1

	
� ppnan � pnbnq

� cpn

0 � � � � � pn�1cp
n�1 � pncn.

The last equality holds since, for all i, piapn�i

i � 0 or pibpn�i

i � 0. By the inductive hypothesis,

sipa; bq � ci for all i � 1, . . . , n � 1. Thus, pispn�i

i � picpn�i

i for all i � 1, . . . , n � 1. After

canceling these common terms from both sides of equation (2.5), we are left with pnsn �

pncn. That is, snpa; bq � cn � an � bn, as desired.

The following is an immediate corollary.

Corollary 2.5. The zero for the operation ` is p0, 0, . . .q, the Witt vector all of whose components

are 0.

This is a good place to state Witt’s theorem on the structure of WpAq.

Theorem 2.6 (Witt). If p is a prime and A is a commutative ring with identity, then WpAq and

WlpAq with addition ` and multiplication b are commutative rings for all l P t0, 1, . . .u. The zero

element is p0, 0, 0, . . .q and the unit element is p1, 0, 0, . . .q. Moreover, for all n � 0, 1, . . ., the Witt

polynomial wn is a ring homomorphism from WpAq (or WlpAq) to A.

Proof. By universality, it suffices to prove the theorem for A � Z. We will check the ring

axioms using ghost component equations and Theorem 2.2. In fact, some of the work has
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already been done. Corollary 2.3 shows that both operations are commutative. Corollary

2.5 shows that p0, 0, 0, . . .q is the zero element.

Next, we will verify that I � p1, 0, . . . , 0q is the multiplicative identity in WpAq. By

the definition of the Witt polynomials, wnpIq � 1 for all n. Thus, for all n and all X �

pX0, X1, . . .q,

wnpmpI; Xqq � wnpIqwnpXq � 1 �wnpXq � wnpXq. (2.6)

Now the polynomials wn are certainly not one-to-one, since the value of wnpaq depends

only on the 0-th through n-th components of a. However, for a, b P WpZq, it is true that

wnpaq � wnpbq for all n if and only if a � b. Therefore, we conclude from equation (2.6) that

mpI; Xq � X for all X. That is, I � p1, 0, 0, . . .q is the unit element in WpAq.

Each remaining ring axiom can be proved using Theorem 2.2 (or a generalization) and

an appropriate polynomialφ. The left distributive law will be proved in detail to illustrate

the method, while the others will be left to the reader. Note that the right distributive law

follows from the left distributive law and commutativity of b.

For the left distributive law, defineφpT, U, Vq � TpU �Vq � TU � TV. Recall the poly-

nomials S and M defined in the proof of Corollary 2.3. For i � 0, 1, . . . , let φipX, Y, Zq �

mipX; spY; Zqq. Then for all n,

wnpφ0pX, Y, Zq, . . . ,φnpX, Y, Zqq � wnpm0pX; spY; Zqq, . . . , mnpX; spY; Zqqq

�MpwnpXq, wnpspY; Zqqq

� wnpXq �wnpspY; Zqq

� wnpXq � SpwnpXq, wnpYqq

� wnpXq � rwnpYq �wnpZqs

� wnpXqwnpYq �wnpXqwnpZq.
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Next, for i � 0, 1, . . . , let ψipX, Y, Zq � sipmpX; Yq; mpX; Zqq. Then for all n,

wnpψ0pX, Y, Zq, . . . ,ψnpX, Y, Zqq � wnps0pmpX; Yq; mpX; Zqq, . . . , snpmpX; Yq; mpX; Zqqq

� SpwnpmpX; Yqq, wnpmpX; Zqqq

� wnpmpX; Yqq �wnpmpX; Zqq

�MpwnpXq, wnpYqq �MpwnpXq, wnpZqq

� wnpXqwnpYq �wnpXqwnpZq.

Hence, the sequences φ0,φ1, . . . and ψ0,ψ1, . . . both satisfy the three-variable version

of equation (2.1) for φ. So by uniqueness, φi � ψi for all i. That is, mipX; spY; Zqq �

sipmpX; Yq; mpX; Zqq for all i.

Now if a, b, c P WpAq (or WlpAq), where a � pa0, a1, . . .q, b � pb0, b1, . . .q, and c �

pc0, c1, . . .q, then

ab pb` cq � pm0pa; spb; cqq, m1pa; spb; cqq, . . .q

� ps0pmpa; bq; mpa; cqq, s1pmpa; bq; mpa; cqq, . . .q

� pab bq` pab cq.

This proves the left distributive law of b over `.

The polynomials needed for the remaining axioms are

additive inverses : φpUq � �U,

associativity of ` : φpT, U, Vq � pT �Uq �V � T � pU �Vq,

associativity of b : φpT, U, Vq � pTUqV � TpUVq.

The statement that the Witt polynomials are ring homomorphisms follows from equa-

tions (2.3), which define the addition and multiplication polynomials.

This completes the main goal of this section. We need one additional tool related to Witt
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vectors. The Verschiebung; V is defined on WpAq by

Vpa0, a1, . . .q � p0, a0, a1, . . .q

and on WlpAq by

Vpa0, a1, . . . , al�2, al�1q � p0, a0, a1, . . . , al�2q.

The Verschiebung is not generally a ring endomorphism because it is not multiplicative.

However, it is additive, as we now show.

Lemma 2.7. The Verschiebung is a group homomorphism from the additive group of WpAq (or

WlpAq) into itself.

Proof. We will prove this in the universal case A � Z. The result for a general ring A then

follows. For pa0, a1, a2, . . .q P WpZq (or WlpZq), consider the ghost component

wnpVpaqq � wnp0, a0, a1, . . .q

� 0pn
� papn�1

0 � p2apn�2

1 � � � � � pnan�1

� p
�

apn�1

0 � papn�2

1 � � � � � pn�1an�1

	
� pwn�1paq.

Thus, for all a, b P WpZq,

wnpVpa` bqq � pwn�1pa` bq

� ppwn�1paq �wn�1pbqq

� pwn�1paq � pwn�1pbq

� wnpVpaqq �wnpVpbqq

� wnpVpaq`Vpbqq.

Since this is true for all n, we may conclude Vpa` bqq � Vpaq`Vpbq.

;“shift”
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For k ¡ 0, denote by Vk the composition of V with itself k times, which has the effect of

shifting each Witt component k positions to the right. Define V0 to be the identity map. It

will be useful to express an arbitrary Witt vector as a sum of Witt vectors having at most

one nonzero component. Recall that WpAq is endowed with the inverse limit topology in

which an infinite series converges if and only if its terms tend to zero.

Lemma 2.8. If pa0, a1, . . .q P WpAq, then pa0, a1, . . .q �
8ð

i�0
Vipai, 0, 0, . . .q.

Proof. For m � 0, 1, 2, . . ., consider the partial sum
mð

i�0
Vipai, 0, 0, . . .q. Since the terms of

the partial sum have disjoint support, it follows from Proposition 2.4 that, for all m ¥ n,

the first n components of pa0, a1, . . .q and
mð

i�0
Vipai, 0, 0, . . .q agree. Therefore, the series

8ð
i�0

Vipai, 0, 0, . . .q converges to pa0, a1, . . .q.

2.2 The Artin-Hasse exponential series

In this section, we define the Artin-Hasse exponential series and prove some of its

remarkable properties. While the eventual goal is to apply this to an algebra over a finite

field of characteristic p, we will work here with formal power series in QJXK. Recall the

exponential series exppXq P QJXK given by

exppXq � 1� X �
X2

2!
�

X3

3!
� � � � .

This series satisfies the following familiar identity.

Proposition 2.9 (Exponential Law). If X and Y are commuting indeterminates, then

exppX �Yq � exppXq exppYq.

Indeed, over a field of characteristic zero, exp is the unique solution of the functional

equation

FpX �Yq � FpXqFpYq (2.7)
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for which F1p0q � 1. (The standard proof from elementary calculus works here. See the

discussion in Mattarei (2006).)

Of course, the coefficients of exp cannot generally be reduced modulo p. For our pur-

poses, we would like an analog of the exponential series whose coefficients are p-integral,

that is, rational numbers whose denominators are not divisible by p. Define the (p-adic)

Artin-Hasse exponential series EppXq P QJXK by

EppXq � exp

�
X �

Xp

p
�

Xp2

p2 �
Xp3

p3 � � � �

�
.

This remarkable series has its roots in a study of reciprocity laws by Artin and Hasse (1928),

early in the development of class field theory. It is clear from the definition that Ep is a

generalization of exp, but it seems rather unlikely that its coefficients are p-integral. In fact,

they are.

Theorem 2.10. The coefficients of the Artin-Hasse exponential series EppXq are p-integral.

There are several rather different ways to prove this surprising fact. We will give a group-

theoretic proof, but first we mention another approach that may yield some additional

insight.

This method is to express Ep as an infinite product of infinite series. The ordinary

exponential series can be written as

exppXq �
8¹

n�1

p1� Xnq�µpnq{n,

where µ is the Möbius function from number theory§. Now each factor is of the form

p1� Xnqα �
8̧

i�0

αpα� 1q � � � pα� i� 1q
i!

p�Xnqi.

§That is, µp1q � 1 and for an integer n ¡ 1, µpnq � 0 if n is divisible by a square and otherwise, µpnq � p�1qk,
where k is the number of distinct prime factors of n.
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Since
�
α
i

�
is p-integral wheneverα is, the problem factors are those for which the exponents

α � �µpnq{n are not p-integral, that is, those for which p | n. If the problem factors are

removed, it turns out that

8¹
n�1
p - n

p1� Xnq�µpnq{n � exp

�
X �

Xp

p
�

Xp2

p2 �
Xp3

p3 � � � �

�
.

For a fuller treatment, see Koblitz (1984), Rabinoff (2007), and Robert (2000). Robert also

gives a proof using the Dieudonné-Dwork criterion from number theory.

Happily, there is also group-theoretic approach, mentioned in Rabinoff (2007). This

involves writing the coefficients in the series EppXq in terms of numbers of p-elements

of symmetric groups. For a positive integer n, denote by Sn the symmetric group on n

letters. For a finite group G, denote by SylppGq the set of all Sylow p-subgroups of G. Then���� SylppSnq
��� is the number of p-elements in the symmetric group on n letters.

Lemma 2.11. For a prime p and indeterminate X,

EppXq � 1�
8̧

n�1

���� SylppSnq
���

n!
Xn. (2.8)

Proof. By the exponential law,

EppXq � exp pXq exp
�

Xp

p



exp

�
Xp2

p2

�
exp

�
Xp3

p3

�
� � � .

When the right-hand side is expanded and like terms gathered, the coefficient of Xn, for

n ¥ 1, is ¸
n�k0�k1 p�k2 p2����

1
pk0!q

�
k1!pk1

� �
k2!p2k2

�
� � �

, (2.9)

where exppXq contributes in each term factors of the form 1
k0 ! ; exp pXp{pq contributes factors

of the form 1
k1 !pk1

; exp
�

Xp2
{p2

	
contributes factors of the form 1

k2 !pp2qk2
; and so on.

Next, we count the p-elements of Sn by conjugacy class. It is well known that elements

in Sn are conjugate if and only if they have the same cycle structure. (See, for example,
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Proposition 3.3 of Grove (1983).) Consider a p-element σ P Sn having the following cycle

structure:

k0 fixed points,

k1 p-cycles,

k2 p2-cycles,
...

To count the elements of Sn that are conjugate to σ , it suffices to count the elements that

centralize σ , since |clSnpσq| � |Sn| { |CGpσq|, where clSnpσq denotes the conjugacy class and

CSnpσq denotes the centralizer in Sn of σ (Proposition 2.3 of Grove (1983)). Now CSnpσq

has a normal abelian subgroup that is the direct product of ki cyclic groups of order pi,

for i � 0, 1, 2, . . .. The factor group of CSnpσq by this normal subgroup is isomorphic

to the direct product of the symmetric groups on ki symbols (i � 0, 1, 2, . . .). Hence,

|CSnpσq| � pk0! k1! k2! � � � q
�

pk1 p2k2 p3k3 � � �
�
. This means

clSnpσq �
|Sn|

|CSnpσq|

�
n!

pk0! k1! k2! � � � q
�

pk1 p2k2 p3k3 � � �
�

�
n!

pk0!q
�
k1! pk1

� �
k2! p2k2

�
� � �

.

Therefore, the number of p-elements in Sn is
���¤ SylppSnq

��� � ¸
n�k0�pk1�p2k2����

n!
pk0!q

�
k1! pk1

� �
k2! p2k2

�
� � �

. (2.10)

Putting equations (2.9) and (2.10) together, we conclude

EppXq � 1�
8̧

n�1

�
� ¸

n�k0�k1 p�k2 p2����

1
pk0!q

�
k1!pk1

� �
k2!p2k2

�
� � �

�
�Xn

� 1�
8̧

n�1

�
� ¸

n�k0�k1 p�k2 p2����

n!
pk0!q

�
k1!pk1

� �
k2!p2k2

�
� � �

�
� Xn

n!

� 1�
8̧

n�1

���� SylppSnq
���

n!
Xn,
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as desired.

Next, we state without proof a theorem of Frobenius. A very accessible proof is given

by Isaacs and Robinson (1992). (In fact, we need only the special case where m is a power of

a prime, which is Isaacs and Robinson’s Theorem 4.)

Theorem 2.12 (Frobenius). If G is a finite group and m a positive integer dividing |G|, then m

divides |tx P G : xm � 1u|.

This puts in place everything needed to prove Theorem 2.10.

Proof of Theorem 2.10. By Frobenius’s Theorem, the highest power of p dividing |Sn| �

n! also divides
���� SylppSnq

���. Therefore, by Lemma 2.11, the coefficients of EppXq are p-

integral.

As noted above, we cannot expect the Artin-Hasse exponential series to satisfy the

functional equation (2.7). Nevertheless, let us proceed naı̈vely, computing both sides. To

simplify notation, define the formal power series GppXq, for a prime p, by

GppXq � X �
Xp

p
�

Xp2

p2 � � � � .

With this notation,

EppXq � exp
�
GppXq

�
.

Assume X and Y are commuting indeterminates. First,

EppXqEppYq � exp
�
GppXq

�
exp

�
GppYq

�
� exp

�
GppXq � GppYq

�
.

Next,

EppX �Yq � exp
�
GppX �Yq

�
.
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So we will compare GppXq � GppYq to GppX �Yq. We have

GppXq � GppYq �

�
X �

Xp

p
�

Xp2

p2 � � � �

�
�

�
Y�

Yp

p
�

Yp2

p2 � � � �

�

� X �Y�
Xp

p
�

Yp

p
�

Xp2

p2 �
Yp2

p2 � � � �

� pX �Yq �
Xp �Yp

p
�

Xp2
�Yp2

p2 � � � � ,

while

GppX �Yq � pX �Yq �
pX �Yqp

p
�
pX �Yqp2

p2 � � � � .

The degree-1 terms are equal, and so

EppXqEppYq � EppX �Yq mod pX, Yqp, (2.11)

by which we mean that the expressions agree modulo a polynomial in X and Y of degree p

or greater. Compute the difference of the terms of degree p to obtain

Xp �Yp

p
�
pX �Yqp

p
� �

p�1̧

i�1

1
p

�
p
i



Xp�iYi. (2.12)

Denote this expression by S1pX, Yq and use it to adjust the left-hand side of congruence

(2.11) so that both sides agree through their terms of degree p. That is,

EppXqEppYq � EppX �YqEppS1pX, Yqq mod pX, Yqp2
.

We can repeat this procedure, introducing new factors to adjust for the terms of degree

p2, p3, and so on. However, note that the expression on the left-hand side of (2.12) looks

familiar. It appeared in equation (2.4), the formula for the first Witt addition vector. In fact,

S1pX, Yq is precisely s1pX, 0; Y, 0q. This is no accident; the pattern holds for the remaining

terms if we define SkpX, Yq � skpX, 0, . . . , 0; Y, 0, . . . , 0q for all k ¥ 0, yielding the following

formula of Blache (2005).
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Theorem 2.13 (Blache). If X and Y are commuting indeterminates, then

EppXqEppYq �
¹
k¥0

EppSkpX, Yqq, (2.13)

where SkpX, Yq � skpX, 0, . . . , 0; Y, 0, . . . , 0q for all k ¥ 0. In particular, Sk is a homogeneous

polynomial of degree pk having integer coefficients.

Proof. By Corollary 2.3, sk is an isobaric polynomial of weight pk with integer coefficients.

Therefore, SkpX, Yq � skpX, 0, . . . , 0; Y, 0, . . . , 0q is a homogeneous polynomial of degree pk

with integer coefficients. For l ¥ 0, suppose pX, X, . . . , Xq, pY, Y, . . . , Yq P Wl�1 pQJX, YKq.

Using Lemmas 2.7 and 2.8, we have

pX, X, . . . , Xq` pY, Y, . . . , Yq �

�
lð

k�0

�
VkpX, 0, . . . , 0q

	�
`

�
lð

k�0

�
VkpY, 0, . . . , 0q

	�

�
lð

k�0

�
VkpX, 0, . . . , 0q`VkpY, 0, . . . , 0q

	

�
lð

k�0
Vk ppX, 0, . . . , 0q` pY, 0, . . . , 0qq

�
lð

k�0
Vk ps0pX; Yq, s1pX, 0; Y, 0q, . . . , slpX, 0, . . . , 0; Y, 0, . . . , 0qq

�
lð

k�0
Vk pS0pX, Yq, S1pX, Yq, . . . , SlpX, Yqq

�
lð

k�0
Vk

�
lð

i�0
VipSipX, Yq, 0, . . . , 0q

�

�
lð

k�0

lð
i�0

Vk�i pSipX, Yq, 0, . . . , 0q

�
lð

i�0
Vi

�
lð

k�0
VkpSipX, Yq, 0, . . . , 0q

�

�
lð

i�0
Vi pSipX, Yq, SipX, Yq, . . . , SipX, Yqq . (2.14)
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For any i � 0, . . . , l,

wl

�
Vi pSipX, Yq, SipX, Yq, . . . , SipX, Yqq

	
� wl pp0, . . . , 0, SipX, Yq, . . . , SipX, Yqqq

� piSipX, Yqpl�i
� pi�1SipX, Yqpl�i�1

� � � � � pl SipX, Yq

� pl
l�i̧

j�0

SipX, Yqp j

p j .

Apply wl to each side of equation (2.14), using the fact that wl is a ring homomorphism.

The left-hand side is

wl ppX, . . . , Xq` pY, . . . , Yqq � wl ppX, . . . , Xqq �wl ppY, . . . , Yqq

� pl
ļ

j�0

Xp j

p j � pl
ļ

j�0

Yp j

p j

The right-hand side is

wl

�
lð

i�0
Vi pSipX, Yq, . . . , SipX, Yqq

�
�

ļ

i�0

wl

�
Vi pSipX, Yq, . . . , SipX, Yqq

	

�
ļ

i�0

�
�pl

l�i̧

j�0

SipX, Yqp j

p j

�
.

Dividing both sides by pl yields

ļ

j�0

Xp j

p j �
ļ

j�0

Yp j

p j �
ļ

i�0

l�i̧

j�0

SipX, Yqp j

p j .

It follows that, for all l,

GppXq � GppYq �
ļ

i�0

Gp pSipX, Yqq mod pX, Yqpl�1
.

Allow l to grow to infinity to obtain

GppXq � GppYq �
8̧

i�0

Gp pSipX, Yqq .



26

Finally, apply exp to each side and use the exponential law to conclude

exp
�
GppXq � GppYq

�
� exp

�¸
i¥0

Gp pSipX, Yqq

�
,

exp
�
GppXq

�
exp

�
GppYq

�
�

¹
i¥0

exp
�
Gp pSipX, Yqq

�
,

EppXqEppYq �
¹
i¥0

EppSipX, Yqq,

as desired.



CHAPTER 3

SUBGROUPS DEFINED BY THE ARTIN-HASSE EXPONENTIAL SERIES

In this chapter, we return to algebra groups to define analogs of F-exponent subgroups

and exponentially closed subgroups for the Artin-Hasse exponential series and to develop

some of their properties. We continue the notational conventions of Chapter 1. That is,

F is a field of characteristic p and order q; R is a finite-dimensional associative F-algebra;

J � JpRq the Jacobson radical of R; and G � 1� J.

3.1 The set EppFxq and the subgroup E F
p pxq

First, for x P J, define the set

EppFxq �
 

Ep pαxq : α P F
(

.

Notice that if xp � 0, then EppFxq � exppFxq. However, EppFxq need not be a group in

general. We next prove three lemmas that will be used frequently in what follows.

Lemma 3.1. Distinct sets of the form EppFxq intersect trivially.

Proof. We first show that Ep is a bijection. Recall that Eppxq � exppGpxqq where Gpxq �

x� xp

p �
xp2

p2 � � � � . It is well known that a formal power series with constant term 0 has an

inverse with respect to function composition if and only if its linear coefficient is invertible.

(See Theorem 1 of VI.1.3 of (Robert, 2000).) Therefore, G is invertible with respect to function

composition. Since the exponential function is also invertible, their composite is as well.

Hence, Ep is a bijection.

Now suppose x, y P J and g P EppFxq X EppFyq for some g � 1. Then g � Eppαxq �

Eppβyq for someα,β P F withα,β � 0. Since Ep is injective, this impliesαx � βy, that is,

x � β
α

y. We conclude EppFxq � EppFyq.

27
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Lemma 3.2. If x P J, then the map Fn Ñ 1� J given by

pα1,α2, . . . ,αnq ÞÑ Eppα1xqEppα2x2q � � � Eppαnxnq

is one-to-one. It follows that

���EppFxqEppFx2q � � � EppFxnq
��� � qn,

and more generally, ��EppFxe1qEppFxe2q � � � EppFxenq
�� � qn,

where |F| � q and 0   e1   e2   � � �   en.

Proof. Supposeα1,α2, . . . ,αn,β1,β2, . . . ,βn P F such that

Eppα1xqEppα2x2q � � � Eppαnxnq � Eppβ1xqEppβ2x2q � � � Eppβnxnq. (3.1)

That is,

1�α1x�w1 � 1�β1x�w2,

for some w1, w2 P x2Frxs. It follows thatα1 � β1. Multiplying both sides of equation (3.1)

by Eppα1xq�1 � Eppβ1xq�1, we obtain

Eppα2x2q � � � Eppαnxnq � Eppβ2x2q � � � Eppβnxnq.

Repeating the same argument, we conclude α2 � β2, α3 � β3, and so on. The result

follows.

Lemma 3.3. Let x P J. For all r ¥ 1, if α1,α2, . . . ,αr P F with α1 � 0, then the vector

α1x�α2x2 � � � � �αrxr generates the same F-algebra as x.

Proof. Without loss of generality, assume xr�1 � 0. To enable us to write the powers more

easily, we will use double subscripts for the coefficients. Set

w � α1,1x�α1,2x2 � � � � �α1,r�1xr�1 �α1,rxr,
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where α1,1,α1,2, . . . ,α1,r P F with α1,1 � 0. Since w P xFrxs (the F-algebra generated by

x), we have wFrws � xFrxs. We now show the reverse inclusion. Consider the triangular

system

w � α1,1x � α1,2x2 � � � � � α1,r�1xr�1 � α1,rxr,

w2 � α2,2x2 � � � � � α2,r�1xr�1 � α2,rxr,
...

. . .
...

...

wr�1 � αr�1,r�1xr�1 � αr�1,rxr,

wr � αr,rxr,

where αi, j P F for all 1 ¤ i ¤ j ¤ r. Since α1,1 � 0, we have αi,i � 0 for all i. From the last

row we get xr P wFrws. Using the second-to-last row, this implies

wr�1 �αr�1,rxr � αr�1,r�1xr�1 P wFrws,

and so xr�1 P wFrws. Continue working from the bottom up in this manner to obtain

xr�2, . . . , x2, x P wFrws. Therefore, xFrxs � wFrws, and so equality holds.

While exppFxq is a subgroup of 1� J whenever it is defined (that is, when xp � 0), the

set EppFxq is not generally big enough to be closed under multiplication. We now define a

larger set that is. For x P J with xpl�1
� 0, define the set E F

p pxq by

E F
p pxq � Ep pFxq Ep pFxpq � � � Ep

�
Fxpl

	
�

!
Ep pα0xq Ep pα1xpq � � � Ep

�
αlxpl

	
: α0, . . . ,αl P F

)
.

Our next goal is to show E F
p pxq is a strong subgroup of G � 1� J. We begin with a technical

lemma about products of elements of the set Ep

�
Fxpk

	
for a fixed k.

Lemma 3.4. Suppose x P J with xpl�1
� 0. Fix 0 ¤ k ¤ l. For all r ¥ 1, if γ1,γ2, . . . ,γr P F,

then

Ep

�
γ1xpk

	
Ep

�
γ2xpk

	
� � � Ep

�
γrxpk

	
� Ep

�
πxpk

	
Θpxq,
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where π P F and Θpxq is a product such that each factor is of the form Ep
�
δxpm�

for some m ¡ k

and δ P F.

Note that in the factors of Θpxq, the m varies, but there may be more than one factor for

a given value of m. We will call a product such as Θpxq a product of higher p-power-degree

factors when the meaning is clear from the context. It will be evident from the proof that

π �
°
γi, although we will not need this fact.

Proof. Proceed by induction on r, taking the base case to be r � 2. By Blache’s formula

(Theorem 2.13),

Ep

�
γ1xpk

	
Ep

�
γ2xpk

	
�

8¹
i�0

Ep

�
Si

�
γ1xpk

,γ2xpk
		

,

where Si pX, Yq is a homogeneous polynomial of degree pi with integer coefficients. Thus,

the n-th term of Si

�
γ1xpk

,γ2xpk
	

is of the form

cn

�
γ1xpk

	pi�n �
γ2xpk

	n
� cnγ

pi�n
1 γn

2 xpkppi�nqxpkn � cnγ
pi�n
1 γn

2 xpk�i
,

for some integer cn. Add these to obtain Si

�
γ1xpk

,γ2xpk
	
� πk�ixpk�i

for some πk�i P F.

Hence,

Ep

�
γ1xpk

	
Ep

�
γ2xpk

	
�

8¹
i�0

Ep

�
πk�ixpk�i

	

�
l�k¹
i�0

Ep

�
πk�ixpk�i

	
(since xpl�1

� 0)

� Ep

�
πkxpk

	 l�k¹
i�1

Ep

�
πk�ixpk�i

	
,

as desired. This proves the base step of the induction.

Next, suppose the result holds for any product of r � 1 factors from Ep
�
Fxk

�
. Let

γ1, . . . ,γr P F. By the inductive hypothesis, there exist π̂ P F and Θ̂pxq, a product of higher

p-power-degree factors, so that

Ep

�
γ1xpk

	
� � � Ep

�
γr�1xpk

	
Ep

�
γrxpk

	
�

�
Ep

�
π̂xpk

	
Θ̂pxq

	
Ep

�
γrxpk

	
.
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Rearrange the right-hand side and apply the base step to conclude

Ep

�
γ1xpk

	
� � � Ep

�
γr�1xpk

	
Ep

�
γrxpk

	
�

�
Ep

�
π̂xpk

	
Ep

�
γrxpk

		
Θ̂pxq

� Ep

�
πxpk

	
Θ̃pxqΘ̂pxq,

for some π P F and product of higher p-power-degree factors Θ̃pxq. Set Θpxq � Θ̃pxqΘ̂pxq

to complete the proof.

Theorem 3.5. If x P J with xpl�1
� 0 but xpl

� 0, then E F
p pxq is a strong subgroup of G � 1� J

of order ql�1.

Proof. We begin by noting that
���E F

p pxq
��� � ql�1 by Lemma 3.2. We next show that E F

p pxq is

closed under multiplication. Let g, h P E F
p pxq be arbitrary, say

g � Ep pα0xq Ep pα1xpq � � � Ep

�
αlxpl

	
and

h � Ep pβ0xq Ep pβ1xpq � � � Ep

�
βlxpl

	
,

whereα0, . . . ,αl ,β0, . . . ,βl P F. Then we have

gh �
�

Ep pα0xq Ep pα1xpq � � � Ep

�
αlxpl

		
�
�

Ep pβ0xq Ep pβ1xpq � � � Ep

�
βlxpl

		
�

�
Ep pα0xq Ep pβ0xq

�
�
�
Ep pα1xpq Ep pβ1xpq

�
� � �

�
Ep

�
αlxpl

	
Ep

�
βlxpl

		
.

First apply Lemma 3.4 to the leftmost product Ep pα0xq Ep pβ0xq to obtain Ep pπ0xqΘ0pxq,

where π0 P F and Θ0pxq is a product of higher p-power-degree factors. Now there are at

least three factors of the form Ep pδxpq. Apply Lemma 3.4 to these to obtain Ep pπ1xpqΘ1pxq,

where π1 P F and Θ1pxq is a product of higher p-power-degree factors. Continue in this

fashion from left to right. The process terminates after finitely many steps since xpl�1
� 0.

We then have π0, . . . , πl P F for which

gh � Ep pπ0xq Ep pπ1xpq � � � Ep

�
πlxpl

	
P E F

p pxq.

Thus, the set E F
p pxq is closed under multiplication.
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Suppose g P E F
p pxq. Since G is a finite group, g�1 � gn for some positive integer n. But

since E F
p pxq is closed under multiplication, gn P E F

p pxq. Therefore, E F
p pxq is a subgroup of G.

Finally, to show E F
p pxq is strong, we must show that

���E F
p pxq X K

��� is a q-power for all

algebra subgroups K of G. Let A be a subalgebra of J such that E F
p pxq X 1� A � 1. If

1 � g � Ep pα0xq Ep pα1xpq � � � Ep

�
αlxpl

	
P 1� A,

then there is some i P t0, . . . , lu and w P xpi�1Frxs such that g � 1�αixpi
�w and αi � 0.

Choose g so i is minimal. By Lemma 3.3, the F-algebra generated by αixpi
�w is xpi

Frxs.

Thus, 1� xpi
Frxs � 1� A. Hence,

E F
p pxq X 1� A � Ep

�
Fxpi

	
Ep

�
Fxpi�1

	
� � � Ep

�
Fxpl

	
� E F

p

�
xpi

	
.

By Lemma 3.2,
���E F

p

�
xpi

	��� � ql�i�1. Therefore, for all algebra subgroups K, either
���E F

p pxq X K
��� �

ql�i�1, for some 0 ¤ i ¤ l, or
���E F

p pxq X K
��� � 1. That is, E F

p pxq is strong.

3.2 Artin-Hasse-exponentially closed subgroups

Next we define an analog of exponential closure for the Artin-Hasse exponential func-

tion. A subset H � G is said to be Artin-Hasse-exponentially closed, abbreviated AH-closed,

if Ep pγxq P H for all γ P F whenever Ep pxq P H. First, we make the following easy

observation.

Proposition 3.6. Intersections of AH-closed subgroups are AH-closed.

Proof. Let H, K ¤ G be AH-closed. Suppose g P H X K, say g � Eppxq. Then EppFxq � H

and EppFxq � K, since both are AH-closed. Therefore, EppFxq � H X K, implying H X K is

AH-closed.

The next two results show how AH-closed subgroups relate to strong subgroups and to

algebra subgroups.

Proposition 3.7. Algebra subgroups are AH-closed.
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Proof. Let K � 1 � A be an algebra subgroup of G. If g P K, then there is some x P A

such that g � Eppxq. Write g � Eppxq � 1� x�w, where w P x2Frxs. By Lemma 3.3, the

algebra generated by αx� ŵ is the same as the algebra generated by x� w for all α P F

and ŵ P x2Frxs. This means Eppxq P K implies Eppαxq P K for all α P F. That is, K is

AH-closed.

Proposition 3.8. AH-closed subgroups are strong.

Proof. By Propositions 3.7 and 3.6, the intersection of an AH-closed subgroup with an

algebra subgroup is itself AH-closed. Therefore, it suffices to show AH-closed subgroups

have q-power order. Let H be AH-closed. By Lemma 3.1, |H| � 1 is a multiple of q� 1. But

H is a p-group, say |H| � pb. If q � pa, then this means ppa � 1q |
�

pb � 1
�
. By a well-known

result, this occurs only if a | b. In other words, pb � |H| is a power of pa � q.

Unfortunately, E F
p pxq is AH-closed only in some cases. For example, if xp � 0, then

E F
p pxq � Ep pFxq � exp pFxq, which is exponentially closed, hence AH-closed. We can say

a bit more. First we prove some identities in characteristic zero, where we may use the

exponential law freely.

Lemma 3.9. Let J be a nilpotent algebra over Q. If x P J with x2p � 0, then for all a, b, c P Q,

(a) Ep paxq Ep pbxpq � Ep
�
ax� bxp � ap�1bx2p�1

�
;

(b) Ep
�
c
�
ax� bxp � ap�1bx2p�1

��
� Ep pcaxq Ep pcbxpq Ep

�
pcp � cq ap�1bx2p�1

�
.
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Proof. Note that xp2
� 0 since p2 ¥ 2p for all primes p. For the second identity, we compute

Ep

�
c
�

ax� bxp � ap�1bx2p�1
		

� Ep

�
cax� cbxp � cap�1bx2p�1

	

� exp

�
cax� cbxp � cap�1bx2p�1 �

�
cax� cbxp � cap�1bx2p�1

�p

p

�

� exp
�

cax� cbxp � cap�1bx2p�1 �
pcaxqp � ppcaxqp�1cbxp

p




� exp
�

cax� cbxp � cap�1bx2p�1 �
pcaqpxp

p
� pcaqp�1cbx2p�1




� exp
�

cax�
pcaqpxp

p
� cbxp � cap�1bx2p�1 � cpap�1bx2p�1




� exp
�

cax�
pcaqpxp

p
� cbxp � pcp � cq ap�1bx2p�1




� exp
�

cax�
pcaqpxp

p



exp pcbxpq exp

�
pcp � cq ap�1bx2p�1

	

� Ep pcaxq Ep pcbxpq Ep

�
pcp � cq ap�1bx2p�1

	
.

The first identity follows from the second by setting c � 1.

Proposition 3.10. Let J be a nilpotent algebra over a field F of characteristic p. For x P J, the

subgroup E F
p pxq is AH-closed if x2p�1 � 0, but counter-examples exist otherwise.

Proof. We wish to determine whether Eppγyq P E F
p pxq for an arbitrary element Eppyq P E F

p pxq

and γ P F. If x2p � 0, then E F
p pxq � EppFxqEp pFxpq. Thus, a typical element g of E F

p pxq is of

the form

g � EppαxqEp pβxpq � Ep

�
αx�βxp �αp�1βx2p�1

	
,

for someα,β P F, by identity (a) of Lemma 3.9.

First suppose x2p�1 � 0. In this case, g � Ep pαx�βxpq. For arbitrary γ P F,

Ep pγ pαx�βxpqq � Ep pγαxq Ep pγβxpq P E F
p pxq,

by identity (b) of Lemma 3.9. This proves E F
p pxq is AH-closed whenever x2p�1 � 0.
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Now suppose x2p � 0 but x2p�1 � 0. Then again by identity (b) of Lemma 3.9, for γ P F,

Ep

�
γ
�
αx�βxp �αp�1βx2p�1

		
� Ep pγαxq Ep pγβxpq Ep

�
pγp �γqαp�1βx2p�1

	
.

By Lemma 3.2, this is not in E F
p pxq for arbitraryα and β unless γp �γ � 0. Now γp �γ � 0

if and only if γ P Fp, where Fp denotes the field of p elements. This shows E F
p pxq is not

AH-closed if x2p�1 � 0 and F is larger than Fp.



CHAPTER 4

NORMALIZERS OF ALGEBRA SUBGROUPS

In this chapter, we determine when normalizers of algebra subgroups are strong. In

§4.1, we use the exponential series to prove that normalizers of algebra subgroups are

strong when Jp � 0. In §4.2, we use the Artin-Hasse exponential series to prove this result

when Jp�1 � 0 and to construct counter-examples otherwise. Of course, the result of §4.2

supersedes the result of §4.1, but we include the former to illustrate the method to be

generalized.

4.1 When Jp � 0: the exponential series

If Jp � 0, we can use the ordinary exponential series to show normalizers of algebra

subgroups are strong.� Let H � 1� S be an algebra subgroup of G. (So exp S � H.) We

wish to show NGpHq is exponentially closed. That is, we wish to show if exppxq P NGpHq,

then exppαxq P NGpHq for allα P F.

We put a Lie algebra structure on J by defining the Lie bracket r�, �s : J � J Ñ J by

rx, ys � xy � yx for x, y P J. We adopt the convention that omitted brackets are right-

justified, so rx1, . . . , xl�1, xls is understood to mean rx1, rx2, r. . . , rxl�2, rxl�1, xlss � � � s. For

x P J, the operator of Lie multiplication by x is denoted ad x. That is, ad xpyq � rx, ys for

y P J. Notice that if Jp � 0, then pad xqp�1 � 0. For a subalgebra S of J, denote by NJpSq

the Lie normalizer in J of S, that is, NJpSq � ty P J : rS, ys � Su. Recall that NJpSq is a Lie

subalgebra of J, thanks to the Jacobi Identity:.

The following identity is the key to proving the main result of this section.

�The author is grateful to the anonymous referee of a paper on this topic for suggesting the approach taken
in this section.

:rx, ry, zss � rz, rx, yss � ry, rz, xss � 0

36
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Lemma 4.1. If Jp � 0, then ypexp xq�1
� exp pad xq pyq for all x, y P J.

Proof. Suppose x, y P J. Expand the left-hand side to obtain

ypexp xq�1
� yexpp�xq

� exppxqy expp�xq

�

�
1� x�

x2

2!
� � � � �

xp�1

pp� 1q!



y
�

1� x�
x2

2!
� � � � �

p�1qp�1xp�1

pp� 1q!




� y� xy� yx� � � �

� y� rx, ys � � � � ,

where the dots represent terms of degree three or greater (to be specified below). Next

expand the right-hand side to obtain

exp pad xq pyq �
�

I � ad x�
pad xq2

2!
� � � � �

pad xqp�2

pp� 2q!



pyq

� Ipyq � ad xpyq �
pad xq2pyq

2!
� � � � �

pad xqp�2pyq
pp� 2q!

� y� rx, ys �
rx, x, ys

2!
� � � � �

rx, � � � , x, ys
pp� 2q!

.

It is easy to see that the left- and right-hand sides agree through the terms of degree two.

Let us show by induction that the higher-degree terms agree as well. The terms of degree

n� 1 on the left-hand side are

¸
i, j

i� j�n

xi

i!
y
p�1q jx j

j!
�

ņ

j�0

p�1q j xn� j yx j

pn� jq! j!
.
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Using the inductive hypothesis, the terms of degree n� 1 on the right-hand side are

r

nhkkkikkkj
x, . . . , x, ys
pnq!

�

�
��� x

n
,
r

n�1hkkkikkkj
x, . . . , x, ys
pn� 1q!

�
���

�

�
� x

n
,

n�1̧

j�0

p�1q jxn�1� j yx j

pn� 1� jq! j!

�
�

�
x
n

�
�n�1̧

j�0

p�1q jxn�1� j yx j

pn� 1� jq! j!

�
�

�
n�1̧

k�0

p�1qkxn�1�k yxk

pn� 1� kq!k!

�
x
n

�
n�1̧

j�0

p�1q jxn� j yx j

npn� 1� jq! j!
�

n�1̧

k�0

p�1qkxn�1�k yxk�1

npn� 1� kq!k!
;

gathering like terms (when j � k� 1),

�
p�1q0 ynx
npn� 1q!

�
n�1̧

j�1

�
p�1q jxn� j yx j

npn� 1� jq! j!
�
p�1q j�1xn� j yx j

npn� jq!p j� 1q!



�
p�1qn�1xyn

n!

�
ynx
n!

�
n�1̧

j�1

�
p�1q jxn� j yx jpn� jq
npn� jqpn� 1� jq! j!

�
p�1q jxn� j yx jp jq

npn� jq!p jqp j� 1q!



�
p�1qnxyn

n!

�
ynx
n!

�

�
�n�1̧

j�1

p�1q jxn� j yx jpn� j� jq
npn� jq! j!

�
� p�1qnxyn

n!

�
ynx
n!

�

�
�n�1̧

j�1

p�1q jxn� j yx j

pn� jq! j!

�
� p�1qnxyn

n!

�
ņ

j�0

p�1q jxn� j yx j

pn� jq! j!
,

as desired. This proves the identity.

Lemma 4.2. Suppose Jp � 0. If H � 1 � S is an algebra subgroup of 1 � J, then NGpHq �

exp NJpSq.

Proof. We begin by showing exp NJpSq � NGpHq. If x P NJpSq, then for all y P S, we have

rx, ys, rx, x, ys, . . . , r
p�2hkkkikkkj

x, . . . , x, ys P S. Since S is a subspace of J, this implies exppad xqpyq P S.

By Lemma 4.1, this means ypexp xq�1
P S. Therefore, p1 � yqpexp xq�1

P 1 � S. That is,

exp x P NGpHq.
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To show the reverse containment, let y P S and g P NGpHq. Write g � exp x for

some x P J. (We wish to show x P NJpSq.) Now expp�xq � g�1 P NGpHq, and so

exppad xqpyq � yexpp�xq P S (using Lemma 4.1 again). That is, S is stabilized by

exppad xq � I � ad x�
pad xq2

2!
� � � � �

pad xqp�2

pp� 2q!
.

Consider the nilpotent algebra generated by ad x in EndpJq, the algebra of endomorphisms

of J. By Lemma 3.3 , the algebra generated by ad x� pad xq2

2! � � � � � pad xqp�2

pp�2q! is the same as

the algebra generated by ad x. Thus, ad x stabilizes S, which means x P NJpSq.

Theorem 4.3. If Jp � 0, then normalizers of algebra subgroups are exponentially closed, hence

strong.

Proof. Suppose H � exppSq is an algebra subgroup of G. If g P NGpHq, then by Lemma

4.2, g � exppxq for some x P NJpSq. For α P F, αx P NJpSq since NJpSq is a Lie algebra. It

follows that exppαxq P NGpHq. Therefore, NGpHq is exponentially closed, as desired.

In fact, Theorem 4.3 will be superseded by Theorem 4.5 below. However, we show the

details for the case Jp � 0 using the exponential map because we would like to mimic this

proof for the general case using the Artin-Hasse exponential map. Unfortunately, we will

succeed in generalizing the result only to Jp�1 � 0; our methods will yield counter-examples

otherwise.

4.2 When Jp � 0: the Artin-Hasse exponential series

We wish to define an operator, say had x, that plays the same role for the Artin-Hasse

exponential that ad x plays for the ordinary exponential map when conjugating. Specifically,

for x, y P J, we would like had x to satisfy the following analog of the identity from Lemma

4.1:

yEppxq�1
� Epphad xqpyq. (4.1)
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To develop the identities needed to compute had x, we temporarily work in a field of

characteristic zero. Computing the left-hand side of equation (4.1), we have

yEppxq�1
� Eppxq y Eppxq�1

� exp
�

x�
xp

p
� � � �



y exp

�
x�

xp

p
� � � �


�1

� exp
�

ad
�

x�
xp

p
� � � �




pyq

� exp
�

ad x�
ad xp

p
� � � �



pyq.

Thus, if we define ϑx by

Eppad x� ϑxq � exp
�

ad x�
ad xp

p
� � � �



, (4.2)

then had x � ad x� ϑx is the operator we are looking for. Expanding the left-hand side of

equation (4.2) yields

exp
�
pad x� ϑxq �

pad x� ϑxq
p

p
� � � �



� exp

�
ad x�

ad xp

p
� � � �



.

Since exp is a bijection, this implies

pad x� ϑxq �
pad x� ϑxq

p

p
� � � � � ad x�

ad xp

p
� � � � . (4.3)

(Recall that char F � 0 for now.) Note that ϑx has degree p in the sense that ϑx
�

Ji
�
� Ji�p

for all i.

Let us now work out exactly what ϑx is when J2p � 0. In this case, equation (4.3) reduces

to

ad x� ϑx �
pad xqp

p
� ad x�

ad xp

p
.

Solving for ϑx, we obtain

ϑx �
ad xp

p
�
pad xqp

p
.
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Let Lx, Rx denote left and right multiplication by x, respectively. Then ad x � Lx � Rx and

so

ϑx �
Lxp � Rxp

p
�
pLx � Rxq

p

p

�
Lp

x � Rp
x � pLx � Rxq

p

p
.

Therefore, if J2p � 0,

had x � ad x�
Lp

x � Rp
x � pLx � Rxq

p

p

� Lx � Rx �
Lp

x � Rp
x � pLx � Rxq

p

p
. (4.4)

This expression might look familiar. Indeed, if p is odd, then p�Rxq
p � �Rp

x and so

had x � Lx � Rx �
Lp

x � Rp
x � pLx � Rxq

p

p

� Lx � p�Rxq �

p�1̧

i�1

1
p

�
p
i



Lp�i

x p�Rxq
i

� s1 pLx, Lx;�Rx,�Rxq ,

where s1 is the first Witt addition polynomial (equation (2.4)).

On the other hand, if p � 2, then formula 4.4 simplifies to

had x � Lx � Rx �
L2

x � R2
x � pLx � Rxq

2

2

� Lx � Rx �
L2

x � R2
x � pL2

x � 2LxRx � R2
xq

2

� Lx � Rx �
2LxRx � 2R2

x
2

� Lx � Rx � LxRx � R2
x.
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Now ifα P F, then for any p,

ϑαx �
Lp
αx � Rp

αx � pLαx � Rαxq
p

p

�
αpLp

x �α
pRp

x � pαLx �αRxq
p

p

�
αpLp

x �α
pRp

x �α
ppLx � Rxq

p

p

� αp
�

Lp
x � Rp

x � pLx � Rxq
p

p




� αpϑx.

While the above computations were carried out in characteristic zero, the resulting

identities hold in any characteristic. We summarize in a lemma.

Lemma 4.4. Suppose J is a finitely generated algebra over a field F of arbitrary characteristic p and

that J2p � 0.

(a) If p is an odd prime, then had x � Lx � Rx �
°p�1

i�1 p�1qi 1
p

�p
i

�
Lp�i

x Ri
x.

(b) If p � 2, then had x � Lx � Rx � LxRx � R2
x.

(c) For any prime p, ifα P F, then hadpαxq � α ad x�αpϑx.

Recall that identity (4.1), which defines had x, means the element Eppxq normalizes

1� S if and only if Eppad x� ϑxq stabilizes S. But by Lemma 3.3, Eppad x� ϑxq stabilizes S

if and only if ad x� ϑx stabilizes S. Unfortunately, ϑx is not linear in x and this is what can

prevent normalizers from being AH-closed, as we now show. The theorem is stated as a

result about normalizers of linear subspaces of J, which is a slightly more general setting

than normalizers of algebra subgroups. Indeed, if H � 1� S is an algebra subgroup of

G � 1� J, then NGpSq � NGpHq, since p1� xqg � 1� xg for all x P J and g P G.

Theorem 4.5. Let S be a linear subspace of J.

(a) If Jp�1 � 0, then NGpSq is AH-closed (hence strong).
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(b) If Jp�1 � 0, then examples exist for which |NGpSq| � p � qa, and so NGpSq need not be

strong.

Proof. For part (a), suppose Jp�1 � 0 and S is a subspace of J. Let Eppxq P NGpSq. By

the discussion following Lemma 4.4, this occurs if and only if ad x� ϑx stabilizes S. But

since ϑx has degree p and Jp�1 � 0, this occurs if and only if ad x stabilizes S. Let α P F

be arbitrary. We wish to determine whether Eppαxq P NGpSq, so whether adpαxq � ϑαx �

adpαxq � α ad x stabilizes S. But S is a subspace of J, soα ad x stabilizes S whenever ad x

does. We conclude that NGpSq is AH-closed, hence strong.

For part (b), we construct a family of counter-examples showing normalizers of linear

subspaces need not be strong when Jp�1 � 0. If J is the free F-algebra on two generators,

set J � J {J p�2 and let x and y be the images in J of the two free generators. Since J is

a graded algebra and J p�2 is generated by homogeneous elements, J is graded as well.

Specifically, if Jn denotes the additive abelian subgroup of J generated by the homogeneous

elements of degree n in x and y, then

J �
p�1à
n�1

Jn

(an internal direct sum) and Jr Js � Jr�s, for all r, s P t1, . . . , p� 1u. Let

B � ty, pad x� ϑxqpyq, pad x� ϑxq
2pyq, . . . , pad x� ϑxq

ppyqu,

and set S � spanpBq. This defines S to be a subspace of J containing y and stabilized

by ad x � ϑx. It follows that Eppxq P NGpSq, so in particular, yEppxq�1
P S. The question

is whether Eppαxq P NGpSq for arbitrary α P F. This happens if and only if adpαxq � ϑαx

stabilizes S.

Therefore, we must determine if adpαxq � ϑαx � α ad x �αpϑx stabilizes S. For all

primes p, J2p � Jp�2 � 0, and so Lemma 4.4 implies adpαxq �ϑαx � α ad x�αpϑx. Because
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ad x� ϑx stabilizes S, it follows that

αp pad x� ϑxq � α
p ad x�αpϑx

does, too. Hence,α ad x�αpϑx stabilizes S if and only if

pαp ad x�αpϑxq � pα ad x�αpϑxq � pαp �αq ad x (4.5)

does. Ifα R Fp, thenαp �α � 0, so pαp �αq�1 P F. In this case,α ad x�αpϑx stabilizes S if

and only if

pαp �αq�1 pαp �αq ad x � ad x

does. So the question becomes whether ad xpSq � S. In particular, is ad xpyq � xy� yx in

S? Suppose so. Then there exist a0, a1, . . . , ap P F so that

xy� yx � a0 y�
p̧

n�1

an pad x� ϑxq
n pyq. (4.6)

Notice that since Jp�2 � 0 and ϑx has degree p, pad x� ϑxq
n � pad xqn � pLx � Rxq

n for

all n ¥ 2. Therefore, if n ¥ 2,

pad x� ϑxq
npyq � pLx � Rxq

n pyq

�

�
ņ

i�0

�
n
i



Ln�i

x p�Rxq
i

�
pyq

�
ņ

i�0

p�1qi
�

n
i



xn�i yxi,

which lies in the homogeneous component Jn�1. In particular, for n � p,

pad x� ϑxq
ppyq � pLx � Rxq

p pyq

�
�

Lp
x � Rp

x
�
pyq

� xp y� yxp.
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Hence, equation (4.6) becomes

xy� yx � a0 y� a1 pad x� ϑxq pyq �
p�1̧

n�2

an pad xqn pyq � ap pad xqp pyq

� a0 y� a1 pxy� yx� ϑxpyqq �
p�1̧

n�2

an pad xqn pyq � ap pxp y� yxpq .

On the one hand, the coefficient of xy on the left-hand side is 1, so a1, the coefficient of

xy on the right-hand side must also be 1. On the other hand, since xy� yx P J2, the terms

on the right-hand side lying in Jp�1 must sum to zero. That is,

a1ϑxpyq � ap pxp y� yxpq � 0. (4.7)

We must consider two cases. If p is odd, then by Lemma 4.4 (a), equation (4.7) becomes

a1

p�1̧

i�1

p�1qi�1 1
p

�
p
i



xp�i yxi � ap pxp y� yxpq � 0.

The coefficient, ap, of xp y must be 0, so a1 � 0 also, a contradiction. If p � 2, then by Lemma

4.4 (b), equation (4.7) becomes

a1pxyx� yx2q � a2

�
x2 y� yx2

	
� 0.

Here again, a2, the coefficient of x2 y, must be 0, which forces a1 � 0, a contradiction.

In either case, ad xpyq � xy� yx is not a linear combination of the elements of B. Going

back to equation (4.5), we conclude Eppαxq P NGpSq if and only ifα P Fp. This shows that

NGpSq is not AH-closed if F � Fp.

In fact, we claim NGpSq is not strong if F � Fp. The set S was constructed so that yg P S

if and only if yg � y or else yg � pad x� ϑxq
npyq for some n. We know CGpSq � NGpSq

and that |CGpSq| � qa, for some a, since it is an F- algebra. In this case, nothing commutes

with pad x� ϑxqpyq that does not kill it, while y commutes only with powers of itself and

elements of Jp�1. Therefore, CJpSq is the F-algebra generated by yp and Jp�1.
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We have shown that NGpSq also contains the p elements of the form Eppαxq forα P Fp.

Therefore, |NGpSq| � qa p. If F � Fp, this cannot be a strong subgroup, since its order is not

a power of q.

In fact, the proof of part (b) of Theorem 4.5 can be strengthened to show that normalizers

of algebra subgroups need not be strong. In this case, the algebra generated by the set B

has the same normalizer as the vector space spanned by B. Let A be the subalgebra of J

generated by the set B. Extend B to a vector space basis B̂ of A, by including all products

of elements in B. Then essentially the same argument shows that NGpAq � NGpSq, which is

not strong if F � Fp.



CHAPTER 5

STRONG SUBGROUPS

In Chapters 1 and 3, we defined certain strong subgroups in terms of the exponential

and Artin-Hasse exponential series. The goal of this chapter is to show that an arbitrary

strong subgroup can be described in terms of power series. Perhaps surprisingly, the class of

power series that can be used for such a description is quite large. We start in §5.1 with two

easy negative results. Part of the purpose here is to illustrate the power-series description

of strong subgroups found in §5.2. In §5.3, we present a more thorough treatment of this

description in the case where the group is abelian and the power series has an additional

property.

5.1 Two counter-examples

In this section, we construct two counter-examples. These constructions will ease us

into the more complicated constructions in the main result of this chapter, which appears in

§5.2.

First, we construct a family of examples that shows that the collection of strong sub-

groups of an algebra group need not be closed under intersection. Let G � 1� J be a finite

F-algebra group where F has characteristic p ¡ 2 and order q ¡ p. Let x P J with xp � 0 but

x2 � 0. Suppose f : F Ñ F is a nonzero additive map with f p1q � 0. Define the set H by

H �
!
p1� xqαp1� x2q f pαq : α P F

)
.

It is routine to check that H is an abelian subgroup of G of order q. Also 1� x P H since

f p1q � 0.

Now let A be a subalgebra of J with H X p1� Aq � 1. Then there exists some nonzero

47
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α0 P F such that

p1� xqα0p1� x2q f pα0q P 1� A.

That is,

p1�α0x� � � � qp1� f pα0qx2 � � � � q P 1� A.

Thus, there exists some w P x2 f rxs such that

α0x�w P A.

However, by Lemma 3.3, α0x � w generates the algebra xFrxs, which means xFrxs � A.

Therefore,

H X p1� Aq � H.

We have just shown that, for any algebra subgroup K of G,

H X K � 1 or H X K � H;

and so

|H X K| � 1 or q.

Thus, H is a strong subgroup of G.

Now since xp � 0, we may consider the F-exponent group p1� xqF. This is a strong

subgroup of G of order q which is distinct from H since f is not the zero map. However,

1� x P p1� xqF X H. Thus,

1  
���p1� xqF X H

���   q.

This means that p1� xqF X H is not strong. Therefore, the intersection of strong subgroups

need not be strong.

Next, we construct an example which shows that strong subgroups need not be iso-

morphic to algebra subgroups (even for a different F-algebra). Let G � 1� J be a finite
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F-algebra group where F has odd characteristic p and order q. Let x P J with xp�1 � 0 but

xp � 0. Define the subgroup K by

K � E F
p pxq � EppFxqEppFxpq.

Then K is a strong subgroup of exponent p2 and order q2.

Suppose there is an isomorphism K Ñ 1 � A for some nilpotent F-algebra A. Then

dimFpAq � 2. Since the exponent of 1 � A is p2, there is some element u P A such that

op1� uq � p2. It follows that u, u2, . . . , up are linearly independent. Since p is odd, this

contradicts the fact that A has dimension 2. Therefore, the strong subgroup K is not

isomorphic to any algebra subgroup.

5.2 A power-series description of strong subgroups

In this section, we prove the main result of this chapter. First, we make some definitions.

Assume J is a nilpotent F-algebra with dimFpJq � n. An ideal frame of J is a basis tv1, . . . , vnu

of J satisfying

vi J, Jvi � span tvi�1, . . . , vnu

for all i � 1, . . . , n. Notice that such bases always exist. For example, refine the chain

J � J2 � � � � � Jm�1 � Jm � 0

to a maximal flag

J � V1 � V2 � � � � � Vn�1 � Vn � 0

and choose vi P Vi r Vi�1 for all i � 1, . . . , n. Then tv1, . . . , vnu is an ideal frame of J.

Now suppose G � 1� J is an F-algebra group where dimFpJq � n. Let tv1, . . . , vnu be

an ideal frame of J and write Vi � spantvi, . . . , vnu. Note that 1�Vi is an algebra subgroup

of G and that every element of 1�Vi is of the form 1�αvi �wi�1 for some uniqueα P F

and wi�1 P Vi�1. For i � 1, . . . , n, we define maps �i : 1�Vi Ñ F by

�i : 1�αvi �wi�1 ÞÝÑ α
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whereα P F and wi�1 P Vi�1. Clearly, �i is onto F and has kernel 1�Vi�1.

Lemma 5.1. Let G � 1� J be a finite F-algebra group where F is a field of order q. If dimFpJq � n,

let tv1, . . . , vnu be an ideal frame of J and write Vi � spantvi, . . . , vnu. Suppose H is a strong

subgroup of G for which H � p1�V2q. If H2 � H X p1�V2q, then

(a) |H : H2| � q;

(b) for allα P F, there exists some t P V2 such that 1�αv1 � t P H.

Proof. Since H � p1�V2q, |H : H2| ¡ 1. But |H| and |H2| are both powers of q, as H is

strong in G and 1�V2 is an algebra subgroup of G. Thus, |H : H2| � qa for some a ¥ 1. On

the other hand, |1� J : 1�V2| � q which forces |H : H2| � q as well.

Next, if we restrict the map �1 : G Ñ F to H, the kernel of the restriction is H2. But

since |H : H2| � q � |F|, the restriction of �1 to H must be onto F. That is, for allα P F, there

exists some t P V2 such that 1�αv1 � t P H.

A power series with constant term 1 is said to be strict. In keeping with this metaphor,

we make the following definition. A power series σ : J Ñ 1� J is said to be stringent if it is

of the form

σpxq � 1� x�α2x2 �α3x3 � � � �

for x P J. That is, σ is stringent provided its linear coefficient and constant term are both 1.

Examples of stringent power series include

exppxq � 1� x�
x2

2!
�

x3

3!
� � � �
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and

Eppxq � exp

�
x�

xp

p
�

xp2

p2 � � � �

�

� 1�
8̧

n�1

���� SylppSnq
���

n!
xn (by Lemma 2.11)

� 1�

���� SylppS1q
���

1!
x�

8̧

n�2

���� SylppSnq
���

n!
xn

� 1� x�
8̧

n�2

���� SylppSnq
���

n!
xn.

We next prove some basic properties of stringent power series.

Proposition 5.2. Stringent power series are invertible.

Proof. It is well-known that a formal power series over a ring R is invertible if and only if

its constant term is invertible in R. Since the constant term of a stringent power series is 1,

it is invertible.

Proposition 5.3. If σ is stringent andα P F, then σpαxq�1 � 1�αx� y, for some y P x2FJxK.

Proof. If σ is stringent andα,β P F, then

σpαxq � 1�αx� yα and σpβxq � 1�βx� yβ,

for some yα , yβ P x2FJxK. Therefore,

σpαxqσpβxq � p1�αx� yαq p1�βx� yβq

� 1� pα�βqx� ŷ,

where ŷ P x2FJxK. It follows thatσpαxqσpβxq � 1 if and only ifβ � �α and y � yβ P x2FJxK

is chosen so that ŷ � 0.

For a stringent power series, σ , define σpFxq � tσpαxq |α P Fu. This is a subset, but not

necessarily a subgroup, of G.
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We next show that for any stringent power series σ , a finite algebra group with a fixed

ideal frame is the product, with uniqueness, of some of its subsets of the form σpFxq. Since

algebra groups need not be commutative, we will use product notation with the convention

that the product is taken in order of the index. That is,

n¹
i�1

σpFviq � σpFv1qσpFv2q � � �σpFvnq.

Lemma 5.4. Let G � 1� J be a finite F-algebra group. Suppose tv1, . . . , vnu is an ideal frame of J,

where n � dimFpJq. Suppose σ : J Ñ 1� J is a stringent power series. If Vi � spantvi, . . . , vnu,

then

(a) 1�Vi � σpFviqp1�Vi�1q for all i � 1, . . . , n� 1;

(b) every element of G has a unique representation of the form

σpα1v1qσpα2v2q � � �σpαnvnq

whereα1, . . . ,αn P F. In particular,

G �
n¹

i�1

σpFviq.

Proof. For part (a), fix i P t1, . . . , nu and choose g P 1 � Vi. Then g � 1�αvi �wi�1 for

someα P F and some wi�1 P Vi�1. Now

σpαviq
�1g � p1�αvi � � � � qp1�αvi �wi�1q

� 1� 0vi � ŵi�1

for some ŵi�1 P Vi�1. That is, g � σpαviqp1� ŵi�1q, which implies 1�Vi � σpFviqp1�Vi�1q.

The reverse inclusion is immediate from the definition of the Vi’s and so equality holds.

For part (b), consider an element g P G. Apply the map �1 to g, say �1 : g ÞÑ α1. Then,

by part (a), g � σpα1v1qp1�w2q for some (unique) w2 P V2. Next, apply �2 to p1�w2q and
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express g uniquely as g � σpα1v1qσpα2v2qp1�w3q for someα2 P F and w3 P V3. Successive

application of the remaining maps �i enables us to write

g � σpα1v1qσpα2v2q � � �σpαnvnq

whereα1, . . . ,αn P F are uniquely determined. It follows that

G �
n¹

i�1

σpFviq,

where the product is taken in order.

With these preliminaries in place, we are now ready to state our main theorem.

Theorem 5.5. Suppose F is a field of order q, G � 1� J is a finite F-algebra group, and tv1, . . . , vnu

is an ideal frame of J, where n � dimFpJq. Let σ : J Ñ 1� J be a stringent power series. If H is a

strong subgroup of G, then there exist a partition I f 9YId � t1, . . . , nu and functions fi j : F Ñ F for

all i P I f and j P Id with j ¡ i such that, for allα P F,

hipαq � σpαviq
¹
jPId
j¡i

σ
�

fi jpαqv j
�

is an element of H. Furthermore, every h P H has a unique representation of the form

h �
¹
iPI f

hipαiq

whereαi P F. Finally, the set

T �

$&
%
¹
jPId

σ
�
β jv j

�
: β j P F

,.
-

is a left transversal for H in G.

Before beginning the proof, let us revisit the first example of §5.1, framing it in the

notation of the theorem. Recall that we defined H by

H �

"
p1� xqα

�
1� x2

	 f pαq
: α P F

*
,
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where xp � 0, x2 � 0, and f is a nonzero additive map with f p1q � 0. Suppose also that

xp�1 � 0 and that J � xFrxs. If we define vi � log
�
1� xi

�
, for i � 1, 2, . . . , p � 1 and

σ � exp, then σpαviq � exppαviq �
�
1� xi

�α for allα P F. Also note that tv1, v2, . . . , vp�1u

is an ideal frame of J. Here I f � t1u and Id � t2, . . . , p � 1u. (The set I f consists of the

indices of the frame elements occurring in the “free” factors, while Id consists of the indices

occurring in the “dependent” factors.) Set f1,2 � f and f1, j � 0 for j � 3, . . . , p� 1. Then

we have

h1pαq � exppαv1q
¹
jPId
j¡1

exp
�

f1, jpαqv j
�

� p1� xqα
�

1� x2
	 f pαq

.

Thus, every h P H is of the form

h �
¹
iPI f

hipαq � h1pαq.

Furthermore,

T �

$&
%
¹
jPId

exp
�
β jv j

�
: β j P F

,.
- �

$&
%
¹
jPId

�
1� x j

	β j
: β j P F

,.
-

forms a left transversal for H in G.

Note that this example is somewhat specialized. In the general setting, the functions fi j

need not be additive, for example. We will consider what happens when the fi j are additive

in a special case in §5.3. But first, we prove Theorem 5.5 by induction on the dimension of J.

Proof. Set V2 � spantv2, . . . , vnu. Then 1 � V2 � 1 � J and |1 � J : 1 � V2| � q. If

H2 � H X p1�V2q, then H2 is a strong subgroup of the algebra group 1 � V2 and the

result holds for H2 by induction. That is, there exist a partition Î f 9Y Îd � t2, . . . , nu and

functions fi j : F Ñ F for all i P Î f and j P Îd with j ¡ i that work. In particular,

T̂ �

$&
%
¹
jP Îd

σ
�
β jv j

�
: β j P F

,.
-
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is a left transversal for H2 in 1�V2.

We must consider two cases.

Case 1: Suppose H ¤ 1�V2. This means that H � H2. By Proposition 5.4, the set σpFv1q

forms a left transversal for 1�V2 in G. Set I f � Î f and Id � t1u Y Îd and define

T � σpFv1qT̂ �

$&
%
¹
jPId

σpβ jv jq : β j P F

,.
- .

Then

|T| � q |T̂| � q |1�V2 : H2| � |G : H|

and

TH � σpFv1qT̂H � σpFv1qp1�V2q � G.

Hence, T is a left transversal for H in G. The description of elements of H as products of

hipαiq’s remains essentially unchanged from their description as elements of H2. Therefore,

the result holds in this case.

Case 2: Now suppose that H2 � H X p1�V2q ² H. Since H is strong, |H : H2| � q by

Lemma 5.1. Define Id � Îd, which means T � T̂, and so TH2 � T̂H2 � 1�V2. Fixα P F. By

Lemma 5.1, there exists h P H such that �1 : h ÞÑ α. Of course, �1 also mapsσpαv1q toα and it

maps σpαv1q
�1 to �α. Thus, �1 : σpαv1q

�1h ÞÑ 0, which means σpαv1q
�1h P 1�V2 � TH2.

Hence, there exist tα P T and h2 P H2 such that σpαv1q
�1h � tαh2 or, equivalently,

h � σpαv1qtαh2.

Indeed, tα is uniquely determined byα, as we now show. If we choose another element

g P H which �1 maps to α, then g and h are in the same H2-coset of H and so g � hk2 for
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some k2 P H2. Therefore,

σpαv1q
�1h � tαh2,

σpαv1q
�1hk2 � tαh2k2,

σpαv1q
�1g � tαg2,

where g2 � h2k2 P H2.

In addition, since tα P T,

tα �
¹
jPId

σ
�

f1, jpαqv j
�

for some f1, jpαq P F. Thus we have defined the functions f1, j : F Ñ F for j P Id.

We now define

h1pαq � σpαv1qtα

� σpαv1q
¹
jPId

σ
�

f1, jpαqv j
�

.

Notice that h1pαq is uniquely determined byα since the same is true of tα. Clearly, h1pαq is

sent toα under �1. Also,

h1pαq � σpαv1qtα

� σpαv1qtαh2h�1
2

� hh�1
2 ,

which implies that h1pαq is an element of H.

Next, let h1pFq � th1pαq|α P Fu. Since

|h1pFq| � q � |G : 1�V2| � |H : H2|,

h1pFq forms a left and right transversal for 1 � V2 in G and for H2 in H. (Recall that
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1�V2 � G and H2 � H.) Thus,

TH � Th1pFqH2

� TH2h1pFq

� T̂H2h1pFq

� p1�V2qh1pFq

� G.

Since also

|T| � |T̂| � |1�V2 : H2| � |G : H|,

T is a left transversal for H in G.

Finally, we define I f � t1u Y Î f and conclude that

H �

$&
%
¹
iPI f

hipαiq : αi P F

,.
- ,

which completes the proof.

5.3 A special case

We now obtain a stronger result in the special case where G � 1 � J is abelian and

σ : J ÞÑ 1� J is a stringent power series such that σpαxqσpβxq � σppα �βqxq for all x P J,

α,β P F. (When Jp � 0, the exponential map has these properties, for example.) It is useful

to extend the maps �i defined in §5.2. Suppose tv1, . . . , vnu is an ideal frame of J, where

n � dimFpJq. By Lemma 5.4, every element of G has a unique representation of the form

n¹
k�1

σpαkvkq,

whereαk P F. Thus, for i � 1, . . . , n, the projection map πi : G Ñ F given by

n¹
k�1

σpαkvkq
πiÞÝÑ αi

is a well-defined extension of �i.
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Theorem 5.6. Let G � 1� J be a finite, abelian F-algebra group where F has finite order q. Let

σ : J ÞÑ 1 � J be a stringent power series such that σpαxqσpβxq � σppα �βqxq for all x P J,

α,β P F. If dimFpJq � n, suppose tv1, . . . , vnu is an ideal frame of J and that I f 9YId is a partition

of t1, . . . , nu. Let fi j : F Ñ F be a function for all i P I f and j P Id with j ¡ i. Define, for i P I f , a

function hi : F Ñ G by

hipαq � σpαviq
¹
jPId
j¡i

σp fi jpαqv jq

for α P F. Set hipFq � thipαq |α P Fu and H �

$&
%
¹
iPI f

hipαiq : αi P F

,.
-. Then the following are

equivalent:

(a) fi j is additive for all i P I f and j P Id with j ¡ i;

(b) hi is a homomorphism for all i P I f ;

(c) hipFq is a subgroup of G for all i P I f ;

(d) H is a subgroup of G of order qm where m �
��I f

��, and, moreover, hipαq P H for all i P I f and

α P F;

(e) H is a subgroup of G with hipFq � H for all i P I f ;

(f) H is a subgroup of G with hip0q P H for all i P I f ;

(g) H is a subgroup of G with hip0q � 1 for all i P I f .

Proof. First recall that, by Lemma 5.4, each g P G has a unique representation of the form

g �
n¹

i�1

σpαiviq
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forαi P F where the order of the product does not matter.

(a) ô (b): Let i P I f andα,β P F. Then

hipαq hipβq �

�
���σpαviq

¹
jPId
j¡i

σp fi jpαqv jq

�
���

�
���σpβviq

¹
jPId
j¡i

σp fi jpβqv jq

�
���

� σpαviq σpβviq
¹
jPId
j¡i

σp fi jpαqv jq σp fi jpβqv jq

� σppα�βqviq
¹
jPId
j¡i

σpp fi jpαq � fi jpβqqv jq.

Also,

hipα�βq � σppα�βqviq
¹
jPId
j¡i

σp fi jpα�βqv jq.

From these computations and uniqueness of representation in G (Lemma 5.4), it is apparent

that the fi j’s are additive if and only if the hi’s are homomorphisms.

(b) ñ (c): If hi is a homomorphism, then hipFq is a subgroup of G.

(c) ñ (d): Suppose that hipFq is a subgroup of G for all i. By uniqueness of representation,

hipαq � hipβq if and only ifα � β. Thus, |hipFq| � q. Also, since

hipFq
£¹

kPI f
k¡i

hkpFq � t1u

and H is abelian, we have H �
±

iPI f
hipFq is a group of order qm, where m �

��I f
��. From this,

it is also clear that hipαq P H for all i P I f andα P F.

(d) ñ (e): This is immediate.

(e) ñ (f): This is immediate.

(f) ñ (g): Suppose H is a subgroup of G with hip0q P H for all i P I f . Since H is a subgroup,
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1 P H and so there existαi P F such that

1 �
¹
iPI f

hipαiq.

But uniqueness of representation in G forcesαi � 0 for all i. Similarly, for k P I f , hkp0q P H

means that

hkp0q �
¹
iPI f

hipβiq

for some βi P F. But then βi � 0 for all i. That is,

hkp0q �
¹
iPI f

hip0q � 1

for all k P I f , as desired.

(g) ñ (b): Suppose H is a subgroup of G and that hip0q � 1 for all i P I f . Define the map

h : F|I f | Ñ G by

h : pαiqiPI f ÞÝÑ
¹
iPI f

hipαiq.

Clearly, the image of h is the set H. To show that h is a homomorphism, let αi,βi P F for

i P I f . Since H is a subgroup, there exist γi P F such that

h
�
pαiqiPI f

	
� h

�
pβiqiPI f

	
�

¹
iPI f

hipαiq �
¹
iPI f

hipβiq

�
¹
iPI f

hipγiq

� h
�
pγiqiPI f

	
.

Apply the i-th projection map πi to each side of the above equation to conclude that

γi � αi �βi. Hence, h is a homomorphism.

Next, fix i P I f and precompose h with the monomorphism qi : F Ñ F|I f |, which sends

α P F to p0, . . . ,α, . . . , 0q, the tuple withα in the ith coordinate and 0’s elsewhere. So

α
qi
ÞÝÑ p0, . . . ,α, . . . , 0q h

ÞÝÑ hipαq
¹
kPI f
k�i

hkp0q.
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However,

hipαq
¹
kPI f
k�i

hkp0q � hipαq

by the assumption that hkp0q � 1 for all k. This says that hi � h � qi, the composite of two

homomorphisms. Therefore, hi is itself a homomorphism of groups.

Thus, the given conditions are equivalent.
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Körper der ln-ten Einheitswurzeln, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg

6, 146-162.

Blache, Régis. 2005. A Stickelberger theorem for p-adic Gauss sums, Acta Arithmetica 118, 11-26.

Grove, Larry C. 1983. Algebra, Pure and Applied Mathematics, vol. 110, Academic Press.

Hazewinkel, Michiel. 2009. Witt vectors, Part 1, Handbook of Algebra, Volume 6, pp. 319-472.

Isaacs, I. Martin. 1973. Equally partitioned groups, Pacific Journal of Mathematics 49, 109-116.

. 1995. Characters of groups associated with finite algebras, Journal of Algebra 177, 708-730.

Isaacs, I. Martin and Geoffrey R. Robinson. 1992. On a theorem of Frobenius: solutions of xn � 1 in a finite group,

American Mathematical Monthly 99, 352-354.

Koblitz, Neal. 1984. p-adic Numbers, p-adic Analysis, and Zeta-Functions, Graduate Texts in Mathematics, vol. 58,

Springer-Verlag.

Lenstra, Hendrik. 2002. Construction of the ring of Witt vectors, unpublished lecture notes, available at www.math.

berkeley.edu/~hwl/papers/witt.pdf.

Mattarei, Sandro. 2006. Exponential functions in prime characteristic, Aequationes Mathematicae 71, 311-317.

Previtali, Andrea. 1995. On a conjecture concerning character degrees of some p-groups, Archiv der Mathematik 65,

375-378.

. 1999. Maps behaving like exponentials and maximal unipotent subgroups of groups of Lie type, Communica-

tions in Algebra 27, 2511-2519.

Rabinoff, Joseph. 2007. The theory of Witt vectors, unpublished, available at www.math.harvard.edu/~rabinoff/

misc/witt.pdf.

Robert, Alain M. 2000. A Course in p-adic Analysis, Graduate Texts in Mathematics, vol. 198, Springer-Verlag.

62


