Some Subgroups of Finite Algebra Groups: Normalizers of Algebra Subgroups (preliminary report)

> Darci L. Kracht darci@math.kent.edu

Advisor: Stephen M. Gagola, Jr. Kent State University

AMS Central Section Meeting University of Notre Dame November 7, 2010

Algebra groups

Definition

Let *F* be a field of characteristic *p* and order *q*. Let *J* be a finite-dimensional, nilpotent, associative *F*-algebra. Define G = 1 + J (formally). Then *G* is a finite *p*-group. Groups of this form are called *F*-algebra groups. We will assume this notation throughout.

Example

Unipotent upper-triangular matrices over F

Theorem (Isaacs (1995))

All irreducible characters of algebra groups have q-power degree.

D.L. Kracht (Kent State University)

Algebra subgroups and strong subgroups

- Subgroups: 1 + X where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x + y + xy$
- X need not be an algebra.

Definitions

- If L is a subalgebra of J, then 1 + L is an algebra subgroup of G = 1 + J.
- If H ≤ G such that |H ∩ K| is a q-power for all algebra subgroups K of G, then H is a strong subgroup of G.

Fact

Algebra subgroups are strong.

D.L. Kracht (Kent State University)

Theorem (Isaacs (1995))

Under certain conditions, character stabilizers are strong.

- If $J^p = 0$, $N \leq G$ is an ideal subgroup, and $\theta \in Irr(N)$, then the stabilizer in G of θ is strong.
- If $N \leq G$ is an ideal subgroup, and λ is a linear character of N, then the stabilizer in G of λ is strong.

Question

Are normalizers of algebra subgroups strong?

When $J^p = 0$: The Exponential Map

If J^p = 0, define exp : J → 1 + J and log : 1 + J → J by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1 + x)^{\alpha} = \exp(\alpha \log(1 + x))$.
- We define an *F*-exponent subgroup to be a subgroup of the following form:

$$(1+x)^{\mathsf{F}} = \{(1+x)^{\alpha} | \alpha \in \mathsf{F}\}$$

or equivalently

 $\exp(F\hat{x}) = \{\exp(\alpha\hat{x}) | \alpha \in F\}$

Fact

F-exponent subgroups are strong.

D.L. Kracht (Kent State University)

イロン 不同と 不同と 不同と

Exponentially closed subgroups

Definition

The subgroup H is said to be exponentially closed if $\exp(Fx) \subseteq H$ whenever $\exp(x) \in H$.

Also called partitioned subgroups

Fact

Exponentially closed subgroups are strong.

D.L. Kracht (Kent State University)

< 回 ト < 三 ト < 三 ト

Normalizers of algebra subgroups when $J^p = 0$

Theorem

Suppose $J^p = 0$. If H is an algebra subgroup of G = 1 + J, then $N_G(H)$ is exponentially closed (hence strong).

Sketch of proof.

- Let $H = \exp(L)$ be an algebra subgroup of G.
- To show: if $\exp(x) \in N_G(H)$, then $\exp(\alpha x) \in N_G(H)$ for all $\alpha \in F$.
- Key: $N_G(H) = \exp N_J(L)$ where $N_J(L) = \{x : [L, x] \subseteq L\}$.

$$y^{(\exp x)^{-1}} = y^{\exp(-x)} = \exp(\operatorname{ad} x)(y).$$

- ▶ $\exp(x) \in N_G(H) \iff \exp(\operatorname{ad} x)$ stabilizes L
 - \iff ad x stabilizes L

A generalization of the exponential map.

Goal

To find an analog of exp that works if $x^p \neq 0$.

• From the study of Witt rings and *p*-adic analysis:

Definition

Fix a prime p and a nilpotent algebra X over a field of characteristic 0. The Artin-Hasse exponential function, hexp : $X \rightarrow 1 + X$, is defined by

$$\operatorname{hexp}(x) = \exp\left(x + \frac{x^{p}}{p} + \frac{x^{p^{2}}}{p^{2}} + \frac{x^{p^{3}}}{p^{3}} + \cdots\right)$$
$$= \exp(x) \exp\left(\frac{x^{p}}{p}\right) \exp\left(\frac{x^{p^{2}}}{p^{2}}\right) \exp\left(\frac{x^{p^{3}}}{p^{3}}\right) \cdots$$

D.L. Kracht (Kent State University)

< 17 ▶

Another formula for hexp

Miracle

The coefficients in hexp(x) are p-integral.

Sketch of proof.

• hexp(x) =
$$\sum \frac{\left| \bigcup \operatorname{Syl}_p(S_n) \right|}{n!} x^n$$

• Frobenius: The highest power of p that divides $n! = |S_n|$ also divides $|\bigcup Syl_p(S_n)|$.

• hexp makes sense in characteristic p

< 回 ト < 三 ト < 三 ト

hexp lacks some nice properties of exp

- Suppose xy = yx. Then $\exp(x) \exp(y) = \exp(x + y)$.
- Does hexp(x) hexp(y) = hexp(x + y)?
- Not usually:

$$\left(\exp\left(x + \frac{x^{p}}{p} + \frac{x^{p^{2}}}{p^{2}} + \cdots\right)\right) \left(\exp\left(y + \frac{y^{p}}{p} + \frac{y^{p^{2}}}{p^{2}} + \cdots\right)\right) \neq \left(\exp\left((x + y) + \frac{(x + y)^{p}}{p} + \frac{(x + y)^{p^{2}}}{p^{2}} + \cdots\right)\right)$$

We have

We have

$$hexp(x) hexp(y) = hexp(s_1) hexp(s_p) hexp(s_{p^2}) \cdots$$

where $s_1 = x + y$
 $s_p = \frac{x^p + y^p - (x + y)^p}{p}$

and the remaining polynomials s_{p^n} can be shown to have *p*-integral coefficients.

D.L. Kracht (Kent State University)

Hexponent and hexponentially closed subgroups

Definitions

- A hexponent subgroup is defined to be a subgroup of the following form: hexp(*Fx*) hexp(*Fx*^{*p*}) hexp(*Fx*^{*p*²}) ··· .
- A subgroup H is said to be hexponentially closed if hexp(γx) ∈ H for all γ ∈ F whenever hexp(x) ∈ H.

Facts

- Hexponent and hexponentially closed subgroups are strong.
- Hexponent subgroups are not necessarily hexponentially closed.
- If $J^{2p-1} = 0$, then hexp(Fx) hexp(Fx^p) is hexponentially closed.

Hexponentials and normalizers.

Question

Can we use the hexponential map to show normalizers of algebra subgroups are strong?

Answer

Only if $J^{p+1} = 0$.

Theorem

Let H be an algebra subgroup of G = 1 + J.

- If $J^{p+1} = 0$, then $N_G(H)$ is hexponentially closed (hence strong).
- If $J^{p+1} \neq 0$, then examples exist for which $|N_G(H)| = p \cdot q^a$, and so $N_G(H)$ need not be strong.

Sketch of proof

- We find a function had analogous to ad so that $hexp(x) \in N_G(H)$ $\iff hexp(had x)$ stabilizes $L \iff had x$ stabilizes L
- had $x = \operatorname{ad} x + \delta_x$ where δ_x is not linear

• If
$$J^{2p-1} = 0$$
, $\delta_x = \frac{L_x^p - R_x^p - (L_x - R_x)^p}{p}$, where L_x, R_x are left and right multiplication by x, respectively.

•
$$\delta_x(y) \in J^{p+1}$$

• $J^{p+1} = 0 \implies$

had x = ad x

- ▶ had x stabilizes $L \iff had(\alpha x)$ stabilizes L for all $\alpha \in F$
- N_G(H) is hexponentially closed (hence strong)

- 4 同 6 4 日 6 4 日 6

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
- $hexp(\alpha x) \in N_G(H) \iff had(\alpha x) = \alpha ad x + \alpha^p \delta_x$ stabilizes L
- Now had $x = \operatorname{ad} x + \delta_x$ stabilizes $L \iff \alpha^p \operatorname{had} x = \alpha^p (\operatorname{ad} x + \delta_x) = \alpha^p \operatorname{ad} x + \alpha^p \delta_x$ stabilizes L for all α .
- So had(αx) stabilizes $L \iff (\alpha^p \alpha) \operatorname{ad} x$ stabilizes L
- Examples exist (for all p) for which this happens $\iff \alpha \in GF(p)$ and so $|N_G(H)| = p \cdot q^a$.
- So if J^{p+1} ≠ 0 and |F| = q > p, examples exist for which normalizers of algebra subgroups are not strong.

Other uses for hexp?

- Algebra subgroups are strong, but is the converse true? Are strong subgroups at least isomorphic to algebra subgroups?
- Not necessarily.
- Suppose $x^{p+1} = 0$, but $x^p \neq 0$; $H = hexp(Fx) hexp(Fx^p)$.
- *H* is a strong subgroup of exponent p^2 .
- Assume there is an isomorphism $H \rightarrow 1 + A$, some *F*-algebra group.
- dim_F(A) = 2
- There is some u ∈ A with o(1 + u) = p², so u, u²,..., u^p are non-zero, linearly independent, a contradiction, if p is odd.
- Similar example exists for p = 2.