An Application of the Artin-Hasse Exponential to Finite Algebra Groups

Darci L. Kracht darci@math.kent.edu

Kent State University advisor: Stephen M. Gagola, Jr.

XXXII OSU-Denison Mathematics Conference The Ohio State University May 11, 2014

D.L. Kracht (Kent State University)

Artin-Hasse Exp in Algebra Groups

OSU-Denison 2014 1 / 17

Algebra groups

Definition

Let *F* be a field of characteristic *p* and order *q*. Let *J* be a finite-dimensional, nilpotent, associative *F*-algebra. Define G = 1 + J (formally). Then *G* is a finite *p*-group. Groups of this form are called *F*-algebra groups. We will assume this notation throughout.

Example

Unipotent upper-triangular matrices over F

Theorem (Isaacs 1995)

All irreducible characters of algebra groups have q-power degree.

D.L. Kracht (Kent State University)

(日) (同) (三) (三)

Algebra subgroups and strong subgroups

- Subgroups: 1 + X where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x + y + xy$
 - X need not be an algebra.
- If L is a subalgebra of J, then 1 + L is an algebra subgroup of G = 1 + J.
- If H ≤ G such that |H ∩ K| is a q-power for all algebra subgroups K of G, then H is a strong subgroup of G.
 - In particular, H strong $\implies |H|$ is a q-power.
- Algebra subgroups are strong.

Strong subgroups as point stabilizers

Theorem (Isaacs 1995)

Under certain conditions, character stabilizers are strong.

- If $J^p = 0$, $N \leq G$ is an ideal subgroup, and $\theta \in Irr(N)$, then the stabilizer in G of θ is strong.
- If $N \leq G$ is an ideal subgroup, and λ is a linear character of N, then the stabilizer in G of λ is strong.

Question

Are normalizers of algebra subgroups strong?

< 同 ト く ヨ ト く ヨ ト

When $J^{p} = 0$: The Exponential Map

• If $J^p = 0$, define exp : $J \rightarrow 1 + J$ by the usual power series. For $x \in J$,

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

- Connects multiplication in group to addition and Lie structure in underlying algebra.
- For x ∈ J, exp(Fx)= {exp(αx)|α ∈ F} is called an F-exponent subgroup.
- *F*-exponent subgroups are strong.
- The subgroup H is said to be exponentially closed if $\exp(Fx) \subseteq H$ whenever $\exp(x) \in H$. (Also called partitioned.)
- Exponentially closed subgroups are strong.

Lie algebra structure and exp

- Put a Lie algebra structure on J by defining the Lie bracket
 [·, ·]: J × J → J by [x, y] = xy yx for x, y ∈ J.
- For $x \in J$, define ad $x : J \to J$ by ad x(y) = [x, y] for $y \in J$.

Identity (anon)
If
$$J^p = 0$$
, then $y^{(\exp x)^{-1}} = \exp(\operatorname{ad} x)(y)$ for all $x, y \in J$.

- Let $H = \exp(L)$, where L is a subalgebra of J.
- $N_G(H) = \exp N_J(L)$ where $N_J(L) = \{x : [L, x] \subseteq L\}.$

•
$$\exp(x) \in N_G(H) \iff \exp(\operatorname{ad} x)$$
 stabilizes L
 \iff ad x stabilizes L

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What if $J^p \neq 0$?

- Stick with $x \in J$ for which $x^p = 0$.
- Reduction to the universal case (characteristic 0)

• Halasi (2004)

- Find another bijection $J \rightarrow 1 + J$
 - truncated exponential
 - Previtali (1995): $x + \sqrt{1 + x^2}$ (for odd p only)

Goal

To find an analog/generalization of exp that works if $x^p \neq 0$.

< 回 > < 三 > < 三 >

The Artin-Hasse exponential

Definition

Fix a prime p and a nilpotent algebra X over a field of characteristic 0 or p. The Artin-Hasse exponential series, $E_p : X \to 1 + X$, is defined by

$$E_p(x) = \exp\left(x + \frac{x^p}{p} + \frac{x^{p^2}}{p^2} + \frac{x^{p^3}}{p^3} + \cdots\right)$$

In characteristic 0:

$$E_p(x) = \exp(x) \exp\left(\frac{x^p}{p}\right) \exp\left(\frac{x^{p^2}}{p^2}\right) \exp\left(\frac{x^{p^3}}{p^3}\right) \cdots$$

D.L. Kracht (Kent State University)

Example

In characteristic 0:

$$E_{3}(x) = \exp\left(x + \frac{x^{3}}{3} + \frac{x^{9}}{9} + \frac{x^{27}}{27} + \cdots\right)$$

= $\exp(x) \exp\left(\frac{x^{3}}{3}\right) \exp\left(\frac{x^{9}}{9}\right) \exp\left(\frac{x^{27}}{27}\right) \cdots$
= $\left(1 + X + \frac{X^{2}}{2!} + \cdots\right) \left(1 + \left(\frac{X^{3}}{3}\right) + \frac{\left(\frac{X^{3}}{3}\right)^{2}}{2!} + \cdots\right) \cdots$
= $1 + X + \frac{X^{2}}{2} + \frac{X^{3}}{2} + \frac{3X^{4}}{8} + \frac{7X^{5}}{40} + \cdots$

It looks like we can reduce modulo 3:

$$E_3(X) = 1 + X + 2X^2 + 2X^3 + 0X^4 + X^5 + \cdots$$

- 2

イロト イポト イヨト イヨト

Another formula for E_p

Theorem (Artin, Hasse 1928)

The coefficients in $E_p(x)$ are p-integral.

Sketch of combinatorial proof.

•
$$E_p(x) = \sum \frac{\left| \bigcup \operatorname{Syl}_p(S_n) \right|}{n!} x^n$$

• Frobenius: The highest power of p that divides $n! = |S_n|$ also divides $|\bigcup Syl_p(S_n)|$.

E_p lacks some nice properties of exp

- If XY = YX, then $\exp(X) \exp(Y) = \exp(X + Y)$.
- Above example in characteristic 3:

$$E_{3}(X)E_{3}(Y) = (1 + X + 2X^{2} + 2X^{3} + \cdots) \cdot (1 + Y + 2Y^{2} + 2Y^{3} + \cdots)$$

= 1 + (X + Y) + 2(X + Y)^{2} + 2(X^{3} + X^{2}Y + XY^{2} + Y^{3})
+ (2x^{3}Y + X^{2}Y^{2} + 2XY^{3}) + \cdots

On the other hand,

$$E_{3}(X + Y) = 1 + (X + Y) + 2(X + Y)^{2} + 2(X + Y)^{3} + 0(X + Y)^{4} + \cdots$$

= 1 + (X + Y) + 2(X + Y)^{2} + 2(X^{3} + Y^{3}) + 0(X + Y)^{4} + \cdots

• So
$$E_3(X)E_3(Y) \neq E_3(X+Y)$$
.

- 31

< 回 ト < 三 ト < 三 ト

An Artin-Hasse exponential law

$$E_{p}(x)E_{p}(y) = E_{p}(X+Y)E_{p}(\Theta_{1}) = E_{p}(X+Y)E_{p}(S_{1})E_{p}(\Theta_{2})$$

where $S_{1}(X,Y) = \frac{X^{p} + Y^{p} - (X+Y)^{p}}{p}$

Theorem (Blache 2005)

If X and Y are commuting indeterminates, then

$$E_{\rho}(X)E_{\rho}(Y)=\prod_{k\geq 0}E_{\rho}(S_k(X,Y)),$$

where S_k is a homogeneous polynomial of degree p^k having integer coefficients.

• $S_k(X, Y) = s_k(X, 0, ..., 0; Y, 0, ..., 0)$ where s_k is the k-th Witt addition polynomial.

An Artin-Hasse Freshman Dream

Proposition

In characteristic p, $E_p(X)^{p^a} = E_p(X^{p^a})$, for all integers $a \ge 0$.

In char 0:
$$E_p(X)^p = \exp\left(X + \frac{X^p}{p} + \frac{X^{p^2}}{p^2} + \frac{X^{p^3}}{p^3} + \cdots\right)^p$$

 $= \exp\left(pX + X^p + \frac{X^{p^2}}{p} + \frac{X^{p^3}}{p^2} + \cdots\right)$
 $= \exp(pX) \exp\left(X^p + \frac{(X^p)^p}{p} + \frac{(X^p)^{p^2}}{p^2} + \cdots\right)$
 $= \exp(pX) E_p(X^p).$
So in char $p: E_p(X)^p = E_p(X^p)$
Similarly for p^a .

- 31

- 4 同 6 4 日 6 4 日 6

Subgroups defined by the Artin-Hasse exponential

Definitions

- $E_p(F_x) = \{E_p(\alpha x) | \alpha \in F\}$
 - Usually not closed under multiplication
- AH-exponent subgroup: $\mathcal{E}_p^F(x) = E_p(Fx)E_p(Fx^p)E_p(Fx^{p^2})\cdots$.
- A subgroup H is said to be AH-closed if E_p(γx) ∈ H for all γ ∈ F whenever E_p(x) ∈ H.

Facts

•
$$\mathcal{E}_{p}^{F}(x) = < E_{p}(Fx) >$$

•
$$\mathcal{E}_p^F(x)$$
 and AH-closed subgroups are strong.

•
$$\mathcal{E}_{p}^{F}(x)$$
 is not necessarily AH-closed.

• If $J^{2p-1} = 0$, then $\mathcal{E}_p^F(x) = E_p(Fx)E_p(Fx^p)$ is AH-closed.

Application: normalizers of algebra subgroups

Main Theorem

Let J be a finite-dimensional nilpotent associative algebra over a finite field of positive characteristic p and order q. Suppose G + 1 + J and H is an algebra subgroup of G.

- If $J^{p+1} = 0$, then $N_G(H)$ is AH-closed (hence strong).
- If $J^{p+1} \neq 0$, then examples exist for which $|N_G(H)| = p \cdot q^a$, and so $N_G(H)$ need not be strong.

- 4 週 ト - 4 三 ト - 4 三 ト

Main Theorem

Sketch of proof

- Let H = 1 + L, an algebra subgroup.
- Recall: for $x^p = 0$, $\exp(x) \in N_G(H) \iff \operatorname{ad} x$ stabilizes L
- We want had analogous to ad so that $E_p(x) \in N_G(H) \iff E_p(had x)$ stabilizes $L \iff had x$ stabilizes L
- had $x = \operatorname{ad} x + \theta_x$ where θ_x is not linear
- If $J^{2p-1} = 0$, $\theta_x = \frac{L_x^p R_x^p (L_x R_x)^p}{p}$, where L_x, R_x are left and right multiplication by x, respectively.
- $\theta_x(y) \in J^{p+1}$
- $J^{p+1} = 0 \implies$
 - had $x = \operatorname{ad} x$
 - had x stabilizes $L \iff had(\alpha x)$ stabilizes L for all $\alpha \in F$
 - $N_G(H)$ is AH-closed (hence strong)

- 3

イロト 人間ト イヨト イヨト

Sketch of proof, cont'd

- Suppose $J^{p+1} \neq 0$.
 - $E_p(\alpha x) \in N_G(H) \iff had(\alpha x) = \alpha ad x + \alpha^p \theta_x$ stabilizes L
 - Now had $x = \operatorname{ad} x + \theta_x$ stabilizes $L \iff \alpha^p \operatorname{had} x = \alpha^p (\operatorname{ad} x + \theta_x) = \alpha^p \operatorname{ad} x + \alpha^p \theta_x$ stabilizes L for all α .
 - So had (αx) stabilizes $L \iff (\alpha^p \alpha)$ ad x stabilizes L
 - Examples exist (for all p) for which this happens $\iff \alpha \in GF(p)$ and so $N_G(H)$ is not AH-closed if |F| = q > p
 - In fact, in these examples $|N_G(H)| = p \cdot q^a$.
 - So if J^{p+1} ≠ 0 and |F| = q > p, examples exist for which normalizers of algebra subgroups are not strong.