A power-series description of strong subgroups of finite algebra groups (preliminary report)

Darci L. Kracht darci@math.kent.edu

Advisor: Stephen M. Gagola, Jr. Kent State University

2011 Zassenhaus Group Theory Conference Towson University May 28, 2011

Definition

Let *F* be a field of characteristic *p* and order *q*. Let *J* be a finite-dimensional, nilpotent, associative *F*-algebra. Define G = 1 + J (formally). Then *G* is a finite *p*-group. Groups of this form are called *F*-algebra groups. We will assume this notation throughout.

Example

Unipotent upper-triangular matrices over F

Theorem (Isaacs (1995))

All irreducible characters of algebra groups have q-power degree.

Algebra subgroups and strong subgroups

- Subgroups: 1 + X where $X \subseteq J$ is closed under the operation $(x, y) \mapsto x + y + xy$
- X need not be an algebra.

Definitions

- If L is a subalgebra of J, then 1 + L is an algebra subgroup of G = 1 + J.
- If $H \leq G$ such that $|H \cap K|$ is a *q*-power for all algebra subgroups K of G, then H is a strong subgroup of G.

Fact

Algebra subgroups are strong.

Image: A matrix

Example

The subgroup

$$H = \left\{ \left. \begin{pmatrix} 1 & \alpha & \binom{\alpha}{2} \\ 0 & 1 & \alpha \\ 0 & 0 & 1 \end{pmatrix} \right| \alpha \in F \right\}$$

is a strong subgroup (but not an algebra subgroup) of the algebra group of unipotent 3×3 upper-triangular matrices over *F*.

(Here
$$\binom{lpha}{2}=rac{lpha(lpha-1)}{2}$$
 is the generalized binomial coefficient.)

Strong subgroups play an important role in the following:

- I.M. Isaacs, Characters of groups associated with finite algebras, J. Algebra (1995)
 (Strong subgroups are central to the proof of main theorem mentioned above.)
- A. Previtali, On a conjecture concerning character degrees of some *p*-groups, Arch. Math. (1995) (Similar results for character degrees of certain *p*-subgroups of the symplectic, orthogonal, and unitary groups (for *p* odd). The key to Previtali's proof is that certain sections of the groups are strong.)
- C.A.M. André, Irreducible characters of groups associated with finite algebras with involution, J. Algebra (2010) (Gets stronger and more general versions of the above results using the fact that certain fixed-point subgroups are strong.)

Theorem (Isaacs 1995)

Under certain conditions, character stabilizers are strong.

- If $J^p = 0$, $N \leq G$ is an ideal subgroup, and $\theta \in Irr(N)$, then the stabilizer in G of θ is strong.
- If $N \leq G$ is an ideal subgroup, and λ is a linear character of N, then the stabilizer in G of λ is strong.

Theorem (2010)

Let H be an algebra subgroup of G = 1 + J.

- If $J^{p+1} = 0$, then $N_G(H)$ is strong.
- If $J^{p+1} \neq 0$, then examples exist for which $|N_G(H)| = p \cdot q^a$, and so $N_G(H)$ need not be strong.

(日) (同) (三) (三)

Example when $J^p = 0$: *F*-exponent subgroups

If J^p = 0, define exp : J → 1 + J and log : 1 + J → J by the usual power series.

Definitions

- For $x \in J$ and $\alpha \in F$, define $(1 + x)^{\alpha} = \exp(\alpha \log(1 + x))$.
- We define an *F*-exponent subgroup to be a subgroup of the following form:

•
$$(1+x)^F = \{(1+x)^{\alpha} | \alpha \in F\}$$

or equivalently

• $\exp(F\hat{x}) = \{\exp(\alpha \hat{x}) | \alpha \in F\}$

Fact

F-exponent subgroups are strong.

3

7 / 15

(日) (同) (三) (三)

Next, we construct an example to show that the collection of strong subgroups is not closed under intersection.

Suppose

•
$$x \in J$$
 with $x^p = 0$ but $x^2 \neq 0$

•
$$\epsilon : F \to F$$
 is a nonzero additive map with $\epsilon(1) = 0$
• $H = \left\{ (1+x)^{\alpha} (1+x^2)^{\epsilon(\alpha)} \middle| \alpha \in F \right\}$

Then

- H is an abelian subgroup of G of order q
- $1 + x \in H$ since $\epsilon(1) = 0$
- *H* is strong, as we will show.

$$H = \left\{ \left(1+x\right)^{lpha} \left(1+x^2\right)^{\epsilon(lpha)} \middle| lpha \in F
ight\}.$$

To show H is strong (i.e., $|H \cap K|$ is a q-power \forall algebra subgroups K):

- Let $A \subseteq J$, subalgebra, such that $H \cap (1 + A) \neq 1$.
- Then $\exists \alpha_0 \in F$, $\alpha_0 \neq 0$ such that $(1+x)^{\alpha_0} (1+x^2)^{\epsilon(\alpha_0)} \in 1+A$.
- I.e., $(1 + \alpha_0 x + \cdots) (1 + \epsilon(\alpha_0) x^2 + \cdots) \in 1 + A$
- So $\alpha_0 x + \cdots \in A$
- This generates the algebra xF[x], so $xF[x] \subseteq A$.
- So $H \cap (1 + A) = H$.
- Therefore, \forall algebra subgroups K of G, $H \cap K = 1$ or $H \cap K = H$
- Conclude: *H* is a strong subgroup of *G*.

イロト 不得下 イヨト イヨト 二日

$$H = \left\{ \left(1+x\right)^{lpha} \left(1+x^2\right)^{\epsilon(lpha)} \middle| lpha \in F
ight\}.$$

Now consider the *F*-exponent group $(1 + x)^F = \{ (1 + x)^{\alpha} | \alpha \in F \}$:

- A strong subgroup of G of order q.
- Distinct from H since ϵ is not the zero map.

Then we have

- $1 + x \in (1 + x)^F \cap H$.
- So $1 < |(1+x)^F \cap H| < q$.
- Thus, $(1+x)^F \cap H$ is not strong.
- Conclude: the intersection of strong subgroups need not be strong.

10 / 15

Definition

Let J be a nilpotent F-algebra with $\dim_F(J) = n$. An ideal frame of J is a basis $\{v_1, \ldots, v_n\}$ of J satisfying

$$v_i J, J v_i \subseteq$$
Span $\{v_{i+1}, \ldots, v_n\}$

for all $i = 1, \ldots, n$.

Such bases always exist. For example,

• Refine the chain $J \supset J^2 \supset \cdots \supset J^{m-1} \supset J^m = 0$ to a maximal flag $J = V_1 \supset V_2 \supset \cdots \supset V_{n-1} \supset V_n \supset 0$.

• Choose
$$v_i \in V_i \setminus V_{i+1}$$
 for all $i = 1, \ldots, n$.

• Then $\{v_1, \ldots, v_n\}$ is an ideal frame of J.

11 / 15

Stringent power series

Definition

We call a power series $J \rightarrow 1 + J$ stringent if it is of the form

$$x \mapsto 1 + x + \alpha_2 x^2 + \alpha_3 x^3 + \cdots$$

where $\alpha_2, \alpha_3, \ldots \in F$.

Example

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 is stringent.

Let $S: J \rightarrow 1 + J$ be a stringent power series.

• Then
$$S(\alpha x)^{-1} = 1 - \alpha x + \cdots$$
.

- Define $S(Fx) = \{S(\alpha x) | \alpha \in F\}.$
- S(Fx) is a subset, but not necessarily a subgroup, of G.

▶ ▲ 臣 ▶ 臣 ● � � �

12 / 15

Lemma

For a finite F-algebra group G = 1 + J, suppose

- $\{v_1, \ldots, v_n\}$ is an ideal frame of J where $n = \dim_F(J)$
- $S: J \rightarrow 1 + J$ is a stringent power series
- $V_i = \operatorname{Span}\{v_i, \ldots, v_n\}.$

Then

- $1 + V_i = S(Fv_i)(1 + V_{i+1})$ for all i = 1, ..., n-1;
- Every element of G has a unique representation of the form $S(\alpha_1v_1)S(\alpha_2v_2)\cdots S(\alpha_nv_n)$ where $\alpha_1,\ldots,\alpha_n \in F$.

• In particular, $G = \prod_{i=1}^{n} S(Fv_i)$.

Main Theorem

For a finite F-algebra group G = 1 + J, suppose

- $\{v_1, \ldots, v_n\}$ is an ideal frame of J where $n = \dim_F(J)$
- $S: J \rightarrow 1 + J$ is a stringent power series
- $V_i = \operatorname{Span}\{v_i, \ldots, v_n\}.$

If H is a strong subgroup of G, then there exist

- a partition $I \dot{\cup} \hat{I} = \{1, \ldots, n\}$
- functions $\epsilon_{ij} : F \to F$ for all $i \in I$ and $j \in \hat{I}$ with j > i

such that, $\forall \alpha \in F$, $h_i(\alpha) = S(\alpha v_i) \prod_{\substack{j \in \hat{I} \\ j > i}} S(\epsilon_{ij}(\alpha) v_j)$ is an element of H.

Moreover, every $h \in H$ has a unique representation of the form $h = \prod_{i \in I} h_i(\alpha_i)$ where $\alpha_i \in F$.

Example

Suppose *H* is a strong subgroup of G + 1 + J where $J^p = 0$, dim_{*F*}(J) = 6, $S(\alpha x) = (1 + x)^{\alpha}$, and the partition given by the theorem turns out to be $I = \{1, 3, 5\}$ and $\hat{I} = \{2, 4, 6\}$.

Then there are functions $\epsilon_{1,2}, \epsilon_{1,4}, \epsilon_{1,6}, \epsilon_{3,4}, \epsilon_{3,6}, \epsilon_{5,6}: F \to F$ so that

$$\begin{split} h_1(\alpha_1) &= (1+v_1)^{\alpha_1} (1+v_2)^{\epsilon_{1,2}(\alpha_1)} (1+v_4)^{\epsilon_{1,4}(\alpha_1)} (1+v_6)^{\epsilon_{1,6}(\alpha_1)} \\ h_3(\alpha_3) &= (1+v_3)^{\alpha_3} (1+v_4)^{\epsilon_{3,4}(\alpha_3)} (1+v_6)^{\epsilon_{3,6}(\alpha_3)} \\ h_5(\alpha_5) &= (1+v_5)^{\alpha_5} (1+v_6)^{\epsilon_{5,6}(\alpha_5)} \end{split}$$

are all elements of H.

Moreover, every $h \in H$ is of the form $h = h_1(\alpha_1)h_3(\alpha_3)h_5(\alpha_5)$ for unique $\alpha_1, \alpha_3, \alpha_5 \in F$.