Seperability

55) Show that if K is a separable extension of F and L is a field with $F \subseteq L \subseteq K$, then L is a separable extension of F if K is a separable extension of L.

- K sep over $F \Rightarrow$ every elt of K is the root of a sep poly in F
 - (min poly over F of every element of K is sep).

\[\text{Proof} \]

Since every element of L is an element of K, then every element of L is the root of a separable polynomial in F. Hence, L is a separable extension of F.

Let $\alpha \in K$. $m_{\alpha,F}(x)$ is separable since K is separable over F. Since $F \subseteq L \subseteq K$,

$\text{gcd}(m_{\alpha,F}(x), m_{\alpha,L}(x)) | m_{\alpha,L}(x)$, $\text{since } m_{\alpha,L}(x)$ is separable and $m_{\alpha,F}(x)$ is separable.

Therefore, L is a separable extension over L. \[\square \]
57) Show that if \(K \) is a finite dimensional separable extension of \(F \), then \(K = F(u) \) for some \(u \in K \).

Pg. 594 Prop. 24: Let \(K/F \) be a finite extension. Then \(K = F(\theta) \) iff there exist only finitely many subfields of \(K \) containing \(F \).

- See this proof. (Need induction.)
Let F be a field and let $f(x) = x^2 - x \in F[x]$. Show that if $\text{char}(F) = 0$ or $\text{char}(F) = p$ and $p \nmid n-1$, then f has no multiple root in any extension of F.

$$D_x f(x) = nx^{n-1} - 1$$

Proof:

$f(x) = x^n - x = x(x^{n-1} - 1)$. So the roots of $f(x)$ are 0 and the $n-1$ roots of unity.

$D_x f(x) = nx^{n-1} - 1$. Clearly, 0 is not a root of $D_x f(x)$.

- If $\text{char}(F) = p$ and $p \nmid n-1$, then $n \neq 1$ in F, so $D_x f(x) = nx^{n-1} - 1$; if $x^{n-1} = 1$, $D_x f(x) = p(1) - 1 \neq 0$.
- If $\text{char}(F) = 0$, if $x^{n-1} = 1$, $D_x f(x) = n - 1$.

From #56: if $f(x)$ and $D_x f(x)$ have a common root a, then $f(x) = (x-a)^n g(x)$, where $n \neq 1$.

$\Rightarrow (f(x), D_x f(x)) = 1$

By #56, $f(x)$ has no multiple root in any extension of F. \blacksquare
84) Let \(K \) be a finite normal extension of \(F \) & let \(E \) be the fixed field of the group of all \(F \)-automorphisms of \(K \). Show that the minimal polynomial over \(F \) of each element of \(E \) has only one distinct root.

Normal extension - an algebraic extension which is a splitting field.

WTS: \(\forall \alpha \in E, \ m_{\alpha, F} \) has only one root.

Proof:
Suppose not. Let \(\beta \neq 2 \) be a root of \(m_{\alpha, F} \).
We know \(m_{\alpha, F} \) is irreducible. Let \(\phi, \beta \in \text{Aut}(E) \) where \(\phi : F \rightarrow F \) map \(\alpha \rightarrow \beta \).
So \(\alpha \) is not fixed by \(\phi \), \(\beta \in \text{Aut}(E) \). \(\Box \)
(24) Let \(\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \)

\[(x-2)(x-1)^3 = \text{char } \mathbf{A} \]

\[\lambda = 1; \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

\[w = 0 \quad z = -2w \quad \Rightarrow w = 0 \]

\[x, y \text{ arbitrary} \]

\[\lambda = 2; \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 2 & 0 & -1 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

\[x = 0 \quad 2w - y = 0 \]
\[z = 0 \quad 2w = y \]

Dim Eigenspace # of 1-blocks: 2
of 2-blocks: 1

Jordann Form

\[\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} \]

- Eigenvalues on main diagonal, within each block diagonal