
10 Error Bounds for Linear Systems of Equations

In many applications that give rise to linear systems of equations and least-squares problems, the
right-hand side vector represents a measured quantity and therefore is contaminated by measure-
ment error. It is the aim of the present lecture to investigate how this error affects the accuracy of
the computed solution.

Example 10.1

Two kinds of cells on a Petri dish multiply (by division!) at different known rates. It is quite easy
to see the cells with a microscope, but difficult to tell which kind they are. The total number of
cells has been measured twice with an hour between measurements. We would like to determine
how many cells there will be one hour later.

Let a1 be the number of cells of the first kind available at the first measurement at time t1. At
time, t > t1, the number of cells of this population then is x1(t) = a1 exp(β1(t − t1)), where β1 is
known to be 2 and the unit for t is hours.

Similarly, let a2 be the number of cells of the second kind available at the first measurement
at time t1. At time, t > t1, the number of cells of this population is x2(t) = a2 exp(β2(t − t1) for
β2 = 2.2. We have measured the total number of cells at time t1 to be 124 and at time t2 = t1 + 1
to be 1038. How many cells can we expect at time t2 + 1?

One way to solve this problem is to set up a linear system of equations for a1 and a2. Having
determined these coefficients, the total number of cells at time t is given by

x(t) = x1(t) + x2(t) = a1 exp(β1(t − t1)) + a2 exp(β2(t − t1). (1)

Using the above equation at times t1 and t2 gives

a1 + a2 = 124

a1 exp(β1) + a2 exp(β2) = 1038

with exp(β1) = 7.39 and exp(β2) = 9.03. We express this linear system of equations in the form

Aa = b, (2)

where

A =

[

1 1
7.39 9.03

]

, a =

[

a1

a2

]

, b =

[

124
1038

]

.

The solution of this system is about a1 = 50 and a2 = 74, which yields

x(2) = 50 exp(4) + 74 exp(4.4) = 8757. (3)
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We may wonder how many digits in the computed value for x(2) are correct. There are many
sources of errors. The coefficients β1 and β2 are likely not to be exact, the model (1) only is
an approximation of reality, and the number of cells measured at times t1 and t2 is likely to be
contaminated by error, because the cells multiply rapidly and their number may change during the
measurement process. In this section, we will discuss the sensitivity of the computed solution a of
(2) to errors in the measured data b. 2

10.1 The geometry of sensitivity

We illustrate the sensitivity of the solution of linear systems of equations to perturbations in the
right-hand side with a couple of figures. Introduce the linear system of equations

a1,1x1 + a1,2x2 = b1 (4)

a2,1x1 + a2,2x2 = b2 (5)

Each equation represents a line in the (x1, x2)-plane. The solution of this system amounts to the
familiar problem of finding the point at which two lines intersect. If these lines intersect at a unique
point, then the linear system of equations has a unique solution. On the other hand, if the lines
are parallel, then two cases have to be distinguished: i) if the lines are distinct, then the linear
system of equations has no solution, and ii) if the lines coalesce, then the system has infinitely
many solutions. The angle between the lines determines how accurately the intersection can be
computed in the presence of errors in the data. We will discuss two particular choices of coefficients
ai,j in the equations (4) and (5).

Example 10.2

Consider the linear system of equations

1 · x1 + 0 · x2 = 1

0 · x1 + 1 · x2 = 2

The first equation represents the vertical line {(x1, x2) : x1 = 1, x2 ∈ R} and the second equation
represents the horizontal line {(x1, x2) : x1 ∈ R, x2 = 2}. These lines are perpendicular and
intersect at the point (1, 2); the lines are shown in Figure 1(a). This is an example of an orthogonal
matrix.

Figure 1(b) depicts a plot in which the first right-hand side component is perturbed by −1
(labeled as “data error”). This perturbation may, for instance, stem from a measurement error,
and we are interested in how it affects the computed solution. The equation with the perturbed
right-hand side component represents the horizontal line {(x1, x2) : x1 = 0, x2 ∈ R}. The second
equation is not changed. The lines represented by these equations now intersect at the point (0, 2).
Figure 1(b) shows the new solution with a black disc. 2
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Figure 1: (a) Error-free perpendicular lines; (b) Perpendicular lines with error in our knowledge of
the position of the vertical line.

In the above example the error 1 in the data, as measured by the norm ‖ · ‖, gives rise to an
error 1 in the computed solution. This depends on that the lines represented by the linear system
of equations (4)-(5) are perpendicular. When the angle between the lines is acute, a larger error in
the computed solution may result. This is illustrated in the following example.

Example 10.3

Regard the linear system of equations

x1 + 0 · x2 = 1

−x1 + x2 = 1

The lines corresponding to these equations are depicted in Figure 2(a). Similarly as in Example
10.2, Figure 2(b) shows the result of perturbing the first component of the data by −1. However,
differently from Example 10.2, we see that the norm of the error in the computed solution is now
larger than the error in the data. (Elementary trigonometry shows that the computed solution
error is

√
2.) 2

Examples 10.2 and 10.3 illustrate that errors in the data may be magnified in the computed
solution when the lines are not perpendicular. As the angle between the lines grows more acute,
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Figure 2: (a) Error-free non-perpendicular lines; (b) Non-perpendicular lines with error in our
knowledge of the position of the red line.

the error in the computed solution may be more amplified. Our two-dimensional intuition about
this phenomenon carries over to higher dimensions.

The sensitivity to error in the data is not always revealed by standard numerical methods for the
solution of linear systems of equations. It is important to keep in mind that a computed solution
displayed with 16 decimal digits may not be very accurate.

One approach to gain insight into the sensitivity of the solution of a linear system of equations
to perturbations of the right-hand side is to solve a large number of systems of equations with
perturbed right-hand sides and investigate how much the solution changes. This kind of experi-
mental sensitivity analysis can be carried out for small to medium-sized problems only, because
the computational effort typically is quite large; see Exercises 10.1 and 10.2. Moreover, while ex-
perimental sensitivity analysis provides insight into the “typical sensitivity” of the solution under
perturbations of the right-hand side, one cannot be certain that the sensitivity of the solution has
been fully exposed without a careful design of the experiments. If the solution is very sensitive to a
small class of perturbations, but not to others, then we might not notice this fact without carefully
conducted experiments. This section discusses the sensitivity of the solution of a linear system of
equations in terms of properties of the matrix.
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10.2 Error propagation and the condition number

Let b̃ be the available approximation of the unknown error-free right-hand side b. Then the norm
‖b̃−b‖ provides a convenient measure of the error in b̃. We refer to ‖b̃−b‖ as the absolute error

in b̃, and, to the quotient ‖b̃ − b‖/‖b‖ as the relative error in b̃.
Let an estimate of the absolute or relative errors in b̃ be available. We would like to bound the

absolute or relative errors in the solution of a linear system of equations

Ax = b̃

caused by the error in b̃. Examples 10.2 and 10.3, and in particular Figures 1 and 2, show that
the error in the solution does not only depend on the error in b̃, but also on the matrix A. The
condition number of a matrix, introduced below sheds light on this dependence.

Let A ∈ R
n×n be a nonsingular matrix, and let x and x̃ solve

Ax = b, Ax̃ = b̃. (6)

It is convenient to express x̃ and b̃ in the form

x̃ = x + δx, b̃ = b + δb.

We would like to bound the absolute error ‖δx‖. Subtracting one of the equations (6) from the
other one gives

A(δx) = δb,

and therefore δx = A−1(δb). Application of the compatibility property of the matrix norm (see
(24) of Lecture 1) to this equation yields the bound

‖δx‖ ≤ ‖A−1‖ ‖δb‖. (7)

We see that if ‖A−1‖ is large, then the error δx in the computed solution x̃ may be much larger
than the error δb in the available right-hand side b̃.

Example 10.1 cont’d

Assume that the cell population at time t1 was miscounted by one unit. Then ‖δb‖ = 1. The
inverse of the matrix in (2) is of norm 7.18. We therefore obtain from (7) the bound

‖δa‖ ≤ 7.18 · 1.

It follows that the coefficient a2 of the solution a is bounded by 82 (if we assume that the error
in b does not change the coefficient a1). Replacing 74 by 82 in (3) yields that x(2) = 9409. This
is 652 larger than the value reported in (3). We conclude that the determined number of cells at
time t2 + 1 can be quite sensitive to errors in the cell count. 2
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In some applications a bound for the relative error ‖δx‖/‖x‖ is more relevant than a bound for
the absolute error ‖δx‖. We therefore derive a bound for the former. The compatibility property
((24) of Lecture 1) applied to the left-hand side equation in (6) can be expressed as

1

‖x‖ ≤ ‖A‖ 1

‖b‖ . (8)

Combining the bounds (7) and (8) shows that

‖δx‖
‖x‖ ≤ ‖A‖‖A−1‖‖δb‖‖b‖ . (9)

The quantity
κ(A) = ‖A‖ ‖A−1‖ (10)

is referred to as the condition number of A. It bounds the relative error in x in terms of the relative
error in b. We conclude that the relative error in the computed solution x̃ may be much larger
than the relative error in the available right-hand side b̃ if the the condition number κ(A) is large.

It follows from equations (13) and (15) of Lecture 7 that

κ(A) =
σ1

σn

, (11)

where σ1 and σn are the largest and smallest singular values of A. While the derivation of (10)
required the matrix A to be square, formula (11) does not; it is also valid for m × n matrices with
m > n. This is commented on further below. It follows from (11) that

κ(A) ≥ 1.

A matrix with a condition number fairly close to unity is said to be well conditioned. Matrices with
a large condition number are said to be ill conditioned.

Example 10.4

Let A be the matrix of Example 10.3. Then A has norm 1.62 and its inverse

A−1 =

[

1 0
1 1

]

has the same norm. Therefore, κ(A) = 2.62.
The error-free right-hand of Example 10.3 is b = [1, 2]T and the error satisfies ‖δb‖ = 1.

Therefore, ‖δb‖/‖b‖ = 0.45. We obtain from (7) and (9) that

‖δx‖ ≤ 1.62 · 1,
‖δx‖
‖x‖ ≤ 2.62 · 0.45 = 1.18.

2
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Example 10.5

Let x̃ denote an approximate solution of the linear system of equations

Ax = b,

and define the associated residual error

r̃ = b − Ax̃.

We may consider r̃ an error in b and apply the formulas (7) and (9) to bound the absolute and
relative errors in x̃; see Exercises 10.3 and 10.4. 2

Let A ∈ R
m×n with m ≥ n. Proceeding analogously as in Section 7.2, we obtain

min
‖x‖=1

‖Ax‖ = min
‖x‖=1

‖UΣV Tx‖ = min
‖x‖=1

‖ΣV Tx‖ = min
‖y‖=1

‖Σy‖ = σn. (12)

Combining (11), (12) with (15) of Lecture 7 shows that

κ(A) =
max‖x‖=1 ‖Ax‖
min‖x‖=1 ‖Ax‖ . (13)

This expression also can be used as the definition of the condition number. It agrees with (10) for
square matrices, and has the advantage of applying to m × n matrices with m ≥ n. Moreover,
the quotient (13) suggests a geometric interpretation of the the condition number: the condition
number is the quotient of how much a matrix can stretch and shrink the unit sphere.

Similarly as the condition number was helpful for establishing the bound (9) for the relative
error in the solution due to a perturbation of the right-hand side b, the condition number also
enters naturally when bounding the error in the computed solution caused by round-off errors
during the computations. For instance, assume that the matrix A ∈ R

n×n is nonsingular, and let
x̂ denote the exact solution of the linear system of equations Ax = b. Let x̃ be the approximate
solution computed in finite precision arithmetic with the aid of the QR factorization of A described
in Lecture 6. Then using the property (16) of Lecture 6, one can show that

‖x̃ − x̂‖
‖x̂‖ = O(κ(A)eps). (14)

Thus, if A is not very ill-conditioned, then the method delivers accurate answers in the presence of
round-off errors.

Finally, let A ∈ R
m×n, m > n, and consider the least-squares problem

min
x∈Rn

‖Ax − b‖. (15)

The bound (14) also holds for consistent least-squares problems, i.e., when the value of the ex-
pression (15) is zero. If the least-squares problem is inconsistent, then the error in the com-
puted solution may be larger; in addition to (14) the error bound contains a term proportional to
(κ(A)2 minx∈Rn ‖Ax − b‖eps).
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Exercise 10.1

Generate the Toeplitz matrix A, solution x, and right-hand side b with the MATLAB/Octave
commands

A = toeplitz(v); x = ones(10, 1); b = A ∗ x;

where v = [1, 1/2, 1/3, . . . , 1/10]T . Determine experimentally the sensitivity to errors in the solution
of

Ax = b̃,

when b̃ is a perturbation of the error-free right-hand side b. The perturbation δb = b̃ − b should
be of norm 0.1 and have normally distributed components with zero mean. Vectors δb with this
property can be generated with the MATLAB/Octave function randn. This function determines
vectors with normally distributed components, which have to be scaled appropriately. Determine
the smallest constant c, such that the inequality

‖δx‖
‖x‖ ≤ c

‖δb‖
‖b‖

holds for your experiments. In view of the bound (9), do your experiments suggest that A is well
conditioned or ill conditioned? Compare the computed value of c with κ(A). The latter can be
evaluated with the MATLAB/Octave command cond(A). Which one is larger, c or κ(A)? Is this
to be expected? 2

Exercise 10.2

Carry out the above experiments with the Toeplitz matrix A replaced by a Hilbert matrix of order
10. The latter can be generated with the MATLAB/Octave command

A = hilb(10);

Hilbert matrices are very ill-conditioned. Compare the computed coefficient c with the condition
number of A. 2

Exercise 10.3

Let A be the Toeplitz matrix of Exercise 10.1 and let b = [1, 1, . . . , 1]T ∈ R
10. Solve the linear

system of equations Ax = b by using the backslash operator in MATLAB/Octave. Evaluate
r = b − Ax. Determine a bound for the relative error in x. 2

Exercise 10.4

Repeat Exercise 10.3 with A the Hilbert matrix of Exercise 10.2. 2
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Exercise 10.5

Let A = QR be the QR factorization of A ∈ R
m×n, m ≥ n. Show that κ(A) = κ(R), cf. (14). 2
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