
11 Polynomial and Piecewise Polynomial Interpolation

Let f be a function, which is only known at the nodes x1, x2, . . . , xn, i.e., all we know about the
function f are its values yj = f(xj), j = 1, 2, . . . , n. For instance, we may have obtained these
values through measurements and now would like to determine f(x) for other values of x.

Example 11.1

Assume that we need to evaluate cos(π/6), but the trigonometric function-key on our calculator
is broken and we do not have access to a computer. We recall that cos(0) = 1, cos(π/4) = 1/

√
2,

and cos(π/2) = 0. How can we use this information about the cosine function to determine an
approximation of cos(π/6)? 2

Example 11.2

Let x represent time (in hours) and f(x) be the amount of rain falling at time x. Assume that
f(x) is measured once an hour at a weather station. We would like to determine the total amount
of rain fallen during a 24-hour period, i.e., we would like to compute

∫ 24

0
f(x)dx.

How can we determine an estimate of this integral? 2

Example 11.3

Let f(x) represent the position of a car at time x and assume that we know f(x) at the times
x1, x2, . . . , xn. How can we determine the velocity at time x? Can we also find out the accelera-
tion? 2

Interpolation by polynomials or piecewise polynomials provide approaches to solving the prob-
lems in the above examples. We first discuss polynomial interpolation and then turn to interpolation
by piecewise polynomials.

Polynomial least-squares approximation is another technique for computing a polynomial that
approximates given data. Least-squares approximation was discussed and illustrated in Lecture 6.

11.1 Polynomial interpolation

Given n distinct nodes x1, x2, . . . , xn and associated function values y1, y2, . . . , yn, determine the
polynomial p(x) of degree at most n − 1, such that

p(xj) = yj , j = 1, 2, . . . , n. (1)
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The polynomial is said to interpolate the values yj at the nodes xj , and is referred to as the
interpolating polynomial. The nodes xj are referred to as interpolation points.

Example 11.4

Let n = 1. Then the interpolation polynomial reduces to the constant y1. When n = 2, the
interpolating polynomial is linear and can be expressed as

p(x) = y1 +
y2 − y1

x2 − x1
(x − x1).

2

Example 11.1 cont’d

We may seek to approximate cos(π/6) by first determining the polynomial p of degree at most 2,
which interpolates cos(x) at x = 0, x = π/4, and x = π/2, and then evaluating p(π/6). 2

Before dwelling more on applications of interpolating polynomials, we have to establish that they
exist and are unique. We also will consider several representations of the interpolating polynomial,
starting with the power form

p(x) = a1 + a2x + a3x
2 + · · · + anxn−1. (2)

This is a polynomial of degree at most n− 1. We would like to determine the coefficients aj , which
multiply powers of x, so that the conditions (1) are satisfied. This gives the equations

a1 + a2xj + a3x
2
j + · · · + anxn−1

j = yj , j = 1, 2, . . . , n.

They can be expressed as a linear system of equations with a Vandermonde matrix,
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. (3)

As noted in Section 7.5, Vandermonde matrices are nonsingular when the nodes xj are distinct.
This secures the existence of a unique interpolation polynomial.

The representation of a polynomial p(x) in terms of the powers of x, like in (2), is convenient for
many applications, because this representation easily can be integrated or differentiated. Moreover,
the polynomial (2) easily can be evaluated by nested multiplication without explicitly computing
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the powers xj . For instance, pulling out common powers of x from the terms of a polynomial of
degree three gives

p(x) = a1 + a2x + a3x
2 + a4x

3 = a1 + (a2 + (a3 + a4x)x)x. (4)

Exercise 11.2 is concerned with the evaluation of polynomials of arbitrary degree by nested multi-
plication.

However, Vandermonde matrices generally are severely ill-conditioned. This is illustrated in
Exercise 11.3. When the function values yj are obtained by measurements, and therefore are
contaminated by measurement errors, the ill-conditioning implies that the computed coefficients aj

may differ significantly from the coefficients that would have been obtained with error-free data.
Moreover, round-off errors introduced during the solution of the linear system of equations (3) also
can give rise to a large propagated error in the computed coefficients. We are therefore interested
in investigating other polynomial bases than the power basis.

The Lagrange basis for polynomials of degree n − 1 is given by

ℓk(x) =
n

∏

j=1
j 6=k

x − xj

xk − xj

, k = 1, 2, . . . , n.

The ℓk(x) are known as Lagrange polynomials. They are of degree n − 1. It is easy to verify that
the Lagrange polynomials satisfy

ℓk(xj) =

{

1, k = j,
0, k 6= j.

(5)

This property makes it possible to determine the interpolation polynomial without solving a linear
system of equations. It follows from (5) that the interpolation polynomial is given by

p(x) =
n

∑

k=1

ykℓk(x). (6)

We refer to this expression as the interpolation polynomial in Lagrange form. This representation
establishes the existence of an interpolation polynomial without using properties of Vandermonde
matrices. Unicity also can be shown without using Vandermonde matrices: assume that there are
two polynomials p(x) and q(x) of degree at most n − 1, such that

p(xj) = q(xj) = yj , 1 ≤ j ≤ n.

Then the polynomial r(x) = p(x) − q(x) is of degree at most n − 1 and vanishes at the n distinct
nodes xj . According to the fundamental theorem of algebra, a polynomial of degree n − 1 has at
most n− 1 zeros or vanishes identically. Hence, r(x) vanishes identically, and it follows that p and
q are the same polynomial. Thus, the interpolation polynomial is unique.
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The only drawback of the representation (6) of the interpolation polynomial is that its evaluation
is cumbersome; straightforward evaluation of each Lagrange polynomial ℓk(x) at a point x requires
O(n) arithmetic floating point operations1, which suggests that the evaluation of the sum (6)
requires O(n2) arithmetic floating point operations. The latter operation count can be reduced by
expressing the Lagrange polynomials in a different way. Introduce the nodal polynomial

ℓ(x) =

n
∏

j=1

(x − xj)

and define the weights

wk =
1

n
∏

j=1
j 6=k

(xk − xj)

. (7)

Then the Lagrange polynomials can be written as

ℓk(x) = ℓ(x)
wk

x − xk

, k = 1, 2, . . . , n.

Since the value of the interpolating polynomial p(x) is known to be yk at the interpolation point xk,
we only are interested in evaluating p(x) for x-values different from interpolation points. Therefore,
we may assume that x 6= xk for k = 1, 2, . . . , n. All terms in the sum (6) contain the factor ℓ(x),
which is independent of k. We therefore can move this factor outside the sum, and obtain

p(x) = ℓ(x)
n

∑

k=1

yk

wk

x − xk

. (8)

We noted above that the interpolation polynomial is unique. Therefore, interpolation of the
constant function f(x) = 1, which is a polynomial, gives the interpolation polynomial p(x) = 1.
Since f(x) = 1, we have yk = 1 for all k, and the expression (8) simplifies to

1 = ℓ(x)
n

∑

k=1

wk

x − xk

.

It follows that

ℓ(x) =
1

n
∑

k=1

wk

x − xk

.

1
O(n) stands for an expression bounded by cn as n → ∞, where c > 0 is a constant independent of n.
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Substituting the above expression into (8) yields

p(x) =

n
∑

k=1

yk

wk

x − xk

n
∑

k=1

wk

x − xk

. (9)

This formula is known as the barycentric representation of the Lagrange interpolating polynomial,
or simply as the interpolating polynomial in barycentric form. It requires that the weights be
computed, e.g., by using the definition (7). This requires O(n2) arithmetic floating point operations.
Given the weights, p(x) can be evaluated at any point x in only O(n) arithmetic floating point
operations. Exercises 11.4 and 11.5 are concerned with these computations.

The representation (9) can be shown to be quite insensitive to round-off errors and therefore
can be used to represent polynomials of high degree, provided that overflow and underflow are
avoided during the computation of the weights wk. This easily can be achieved by rescaling all
the weights when necessary; note that the formula (9) allows all weights to be multiplied by an
arbitrary nonzero constant.

11.2 The approximation error

Let the nodes xj be distinct in the real interval [a, b], and let f(x) be an n times differentiable
function in [a, b] with nth derivative f (n)(x). Assume that yj = f(xj), j = 1, 2, . . . , n, and let the
polynomial p(x) of degree at most n−1 satisfy the interpolation conditions (1). Then the difference
f(x) − p(x) can be expressed as

f(x) − p(x) =
n

∏

j=1

(x − xj)
f (n)(ξ)

n!
, a ≤ x ≤ b, (10)

where ξ is a function of the nodes x1, x2, . . . , xn and x. The exact value of ξ is difficult to pin down,
however, it is known that ξ is in the interval [a, b] when x and x1, x2, . . . , xn are there. One can
derive the expression (10) by using a variant of the mean-value theorem from Calculus.

We will not prove the error-formula (10) in this course. Instead, we will use the formula to
learn about some properties of the polynomial interpolation problem. Usually, the nth derivative
of f is not available and only the product over the nodes xj can be studied easily. It is remarkable
how much useful information can be gained by investigating this product! First we note that the
interpolation error maxa≤x≤b |f(x)− p(x)| is likely to be larger when the interval [a, b] is long than
when it is short. We can see this by doubling the size of the interval, i.e., we multiply a, b, x and
the xj by 2. Then the product in the right-hand side of (10) is replaced by

n
∏

j=1

(2x − 2xj) = 2n

n
∏

j=1

(x − xj),
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which shows that the interpolation error might be multiplied by 2n when doubling the size of the
interval. Actual computations show that, indeed, the error typically increases with the length of
the interval when other relevant quantities remain unchanged.

The error-formula (10) also raises the question how the nodes xj should be distributed in the
interval [a, b] in order to give a small error maxa≤x≤b |f(x) − p(x)|. For instance, we may want to
choose nodes xj that solve the minimization problem

min
xj

max
a≤x≤b

n
∏

j=1

|x − xj |. (11)

This complicated problem turns out to have a simple solution! Let for the moment a = −1 and
b = 1. Then the solution is given by

xj = cos

(

2j − 1

2n
π

)

, j = 1, 2, . . . , n. (12)

These points are the projection of n equidistant points on the upper half of the unit circle onto the
x-axis; see Figure 1. The xj are known as Chebyshev points.
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Figure 1: Upper half of the unit circle with 8 equidistant points marked in red, and their projection
onto the x-axis marked in magenta. The latter are, from left to right, the points x1, x2, . . . , x8

defined by (12) for n = 8.

For intervals with endpoints a < b, the solution of (11) is given by

xj =
1

2
(b + a) +

1

2
(b − a) cos

(

2j − 1

2n
π

)

, j = 1, 2, . . . , n. (13)
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The presence of a high-order derivative in the error-formula (10) indicates that interpolation
polynomials are likely to give small approximation errors when the function has many continuous
derivatives that are not very large in magnitude. Conversely, equation (10) suggests that interpo-
lating a function with few or no continuous derivatives in [a, b] by a polynomial of small to moderate
degree might not yield an accurate approximation of f(x) on [a, b]. This, indeed, often is the case.
We therefore in the next section discuss an extension of polynomial interpolation which typically
gives more accurate approximations than standard polynomial interpolation when the function to
be approximated is not smooth.

Exercise 11.1

Solve the interpolation problem of Example 11.1. 2

Exercise 11.2

Write a MATLAB/Octave function for evaluating a polynomial of degree at most n − 1 in nested
form (4). The input are the coefficients a1, a2, . . . , an and x; the output is the value p(x). 2

Exercise 11.3

Let Vn be an n×n Vandermonde matrix determined by n equidistant nodes in the interval [−1, 1].
How quickly does the condition number of Vn grow with n? Linearly, quadratically, cubically,
. . ., exponentially? Use the MATLAB/Octave functions vander and cond. Determine the growth
experimentally. Describe how you designed the experiments. Show your MATLAB/Octave codes
and relevant input and output. 2

Exercise 11.4

Write a MATLAB/Octave function for computing the weights of the barycentric representation
(9) of the interpolation polynomial, using the definition (7). The code should avoid overflow and
underflow. 2

Exercise 11.5

Given the weights (7), write a MATLAB/Octave function for evaluating the polynomial (9) at a
point x. 2

Exercise 11.6

(Bonus exercise.) Assume that the weights (7) are available for the barycentric representation of the
interpolation polynomial (9) for the interpolation problem (1). Let another data point {xn+1, yn+1}
be available. Write a MATLAB/Octave function for computing the barycentric weights for the
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2 1
3 2
4 6
5 24
6 120

Table 1: n and Γ(n).

interpolation problem (1) with n replaced by n + 1. The computations can be carried out in only
O(n) arithmetic floating point operations. 2

Exercise 11.7

The Γ-function is defined by

Γ(x) =

∫ ∞

0
tx−1e−tdt.

Direct evaluation of the integral yields Γ(1) = 1 and integration by parts shows that Γ(x + 1) =
xΓ(x). In particular, for integer-values n > 1, we obtain that

Γ(n + 1) = nΓ(n)

and therefore Γ(n + 1) = n(n − 1)(n − 2) · · · 1. We would like to determine an estimate of Γ(4.5)
by using the tabulated values of Table 1.

(a) Determine the actual value of Γ(4.5) by interpolation in 3 and 5 nodes. Which 3 nodes
should be used? Determine the actual value of Γ(4.5). Are the computed approximations close?
Which one is more accurate.

(b) Also, investigate the following approach. Instead of interpolating Γ(x), interpolate ln(Γ(x))
by polynomials at 3 and 5 nodes. Evaluate the computed polynomial at 4.5 and exponentiate.

How do the computed approximations in (a) and (b) compare? Explain! 2

Exercise 11.8

(a) Interpolate the function f(x) = ex at 20 equidistant nodes in [−1, 1]. This gives an interpolation
polynomial p of degree at most 19. Measure the approximation error f(x) − p(x) by measure the
difference at 500 equidistant nodes tj in [−1, 1]. We refer to the quantity

max
tj , j=1,2...,500

|f(tj) − p(tj)|

as the error. Compute the error.
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0 1
1 2
2 6

Table 2: t and f(t).

(b) Repeat the above computations with the function f(x) = ex/(1− 25x2). Plot p(tj)− f(tj),
j = 1, 2, . . . , 500. Where in the interval [−1, 1] is the error the largest?

(c) Repeat the computations in (a) using 20 Chebyshev points (12) as interpolation points.
How do the errors compare for equidistant and Chebyshev points? Plot the error.

(d) Repeat the computations in (b) using 20 Chebyshev points (12) as interpolation points.
How do the errors compare for equidistant and Chebyshev points? 2

Exercise 11.9

Compute an approximation of the integral

∫ 1

0

√
x exp(x2)dx

by first interpolating the integrand by a polynomial of degree at most 3 and then integrating the
polynomial. Which representation of the polynomial is most convenient to use? Specify which
interpolation points you use. 2

Exercise 11.10

The function f(t) gives the position of a ball at time t. Table 2 displays a few values of f and t.
Interpolate f by a quadratic polynomial and estimate the velocity and acceleration of the ball at
time t = 1. 2

11.3 Interpolation by piecewise polynomials

In the above section, we sought to determine one polynomial that approximates a function on a
specified interval. This works well if either one of the following conditions hold:

• The polynomial required to achieve desired accuracy is of fairly low degree.

• The function has several continuous derivatives and interpolation can be carried out at the
Chebyshev points (12) or (13).
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A quite natural and different approach to approximate a function on an interval is to first split
the interval into subintervals and then approximate the function by a polynomial of fairly low
degree on each subinterval. We now discuss this approach.

Example 11.5

We would like to approximate a function on the interval [−1, 1]. Let the function values yj = f(xj)
be available, where x1 = −1, x2 = 0, x3 = 1, and y1 = y3 = 0, y2 = 1. It is easy to approximate
f(x) by a linear function on each subinterval [x1, x2] and [x2, x3]. We obtain, by using the Lagrange
form (6), that

p(x) = y1
x − x2

x1 − x2
+ y2

x − x1

x2 − x1
= x + 1, −1 ≤ x ≤ 0,

p(x) = y2
x − x3

x2 − x3
+ y3

x − x2

x3 − x2
= 1 − x, 0 ≤ x ≤ 1.

The MATLAB command plot([-1,0,1],[0,1,0]) gives the continuous graph of Figure 2. This is a
piecewise linear approximation of the unknown function f(x). If f(x) indeed is a piecewise linear
function with a kink at x = 0, then the computed approximation is appropriate. On the other
hand, if f(x) displays the trajectory of a baseball, then the smoother function p(x) = 1−x2, which
is depicted by the dashed curve, may be a more suitable approximation of f(x), since baseball
trajectories do not exhibit kinks - even if some players occasionally may wish they do.

Piecewise linear functions give better approximations of a smooth function if more interpolation
points {xj , yj} are used. We can increase the accuracy of the piecewise linear approximant by
reducing the lengths of the subintervals and thereby increasing the number of subintervals.

We conclude that piecewise linear approximations of functions are easy to compute. However,
piecewise linear approximants display kinks. Therefore, many subintervals may be required to
determine a piecewise linear approximant of high accuracy. 2

There are several ways to modify piecewise linear functions to give them a more pleasing look.
Here we will discuss how to use derivative information to obtain smoother approximants. A different
approach, which uses Bézier curves, is described in the next lecture.

Assume that not only the function values yj = f(xj), but also the derivative values y′j = f ′(xj),
are available at the nodes a ≤ x1 < x2 < . . . < xn ≤ b. We can then on each subinterval, say
[xj , xj+1], approximate f(x) by a polynomial that interpolates both f(x) and f ′(x) at the endpoints
of the interval. Thus, we would like to determine a polynomial pj(x), such that

pj(xj) = yj , pj(xj+1) = yj+1, p′j(xj) = y′j , p′j(xj+1) = y′j+1. (14)

These are 4 conditions, and we seek to determine a polynomial of degree 3,

pj(x) = a1 + a2x + a3x
2 + a4x

3, (15)
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Figure 2: Example 11.5: Quadratic polynomial p(x) = 1 − x2 (red dashed graph) and piecewise
linear approximation (continuous blue graph).

which satisfies these conditions. Our reason for choosing a polynomial of degree 3 is that it has 4
coefficients, the same number as the number of condition. Substituting the polynomial (15) into
the conditions (14) gives the linear system of equations,









1 xj x2
j x3

j

1 xj+1 x2
j+1 x3

j+1

0 1 2xj 3x2
j

0 1 2xj+1 3x2
j+1

















a1

a2

a3

a4









=









yj

yj+1

y′j
y′j+1









. (16)

The last two rows impose interpolation of the derivative values. The matrix can be shown to be
nonsingular when xj 6= xj+1. Matrices of the form (16) are referred to as confluent Vandermonde
matrices.

The polynomials p1(x), p2(x), . . . , pn−1(x) provide a piecewise cubic polynomial approximation
of f(x) on the whole interval [a, b]. They can be computed independently and yield an approxi-
mation with a continuous derivative on [a, b]. The latter can be seen as follows: The polynomial
pj is defined and differentiable on the interval [xj , xj+1] for j = 1, 2, . . . , n − 1. What remains to
be established is that our approximant also has a continuous derivative at the interpolation points.
This follows from the interpolation conditions (14). We have

lim
xրxj+1

p′j(x) = p′j(xj+1) = y′j+1, lim
xցxj+1

p′j+1(x) = p′j+1(xj+1) = y′j+1.

The existence of the limit follows from the continuity of each polynomial on the interval where it
is defined, and the other equalities are the interpolation conditions. Thus, p′j(xj+1) = p′j+1(xj+1),
which shows the continuity of the derivative at xj+1 of our piecewise cubic polynomial approximant.
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The use of piecewise cubic polynomials as described gives attractive approximations. However,
the approach discussed requires that derivative information be available. When no derivative infor-
mation is explicitly known, modifications of the scheme outlined can be used. A simple modification
is to use estimates the derivative-values of the function f(x) at the nodes; see Exercise 11.12.

Another possibility is to impose the conditions

pj(xj) = yj , pj(xj+1) = yj+1, p′j(xj) = p′j−1(xj), p′′j (xj) = p′′j−1(xj),

for j = 2, 3, . . . , n − 1. Thus, at the subinterval boundaries at x2, x3, . . . , xn−1, we require the
piecewise cubic polynomial to have continuous first and second derivatives. However, these deriva-
tives are not required to take on prescribed values. The piecewise cubic polynomials obtained in
this manner are known as splines. They are popular design tools in industry. Their determination
requires the solution of a linear system of equations, which is somewhat complicated to derive. We
will therefore omit its derivation. Extra conditions at the interval endpoints have to be imposed in
order to make the resulting linear system of equations uniquely solvable.

Exercise 11.11

Consider the function in Example 11.5. Assume that we also know the derivative values y′1 = 2,
y′2 = 0, and y′3 = −2. Determine a piecewise polynomial approximation on [−1, 1] by using the
interpolation conditions (14). Plot the resulting function. 2

Exercise 11.12

Assume the derivative values in the above exercise are not available. How can one determine
estimates of these values? Use these estimates in the interpolation conditions (14) and compute a
piecewise cubic approximation. How does it compare with the one from Exercise 11.11 and with
the piecewise linear approximation of Example 11.5. Plot the computed approximant. 2

Exercise 11.13

Compute a spline approximant of the function of Example 11.5, e.g., by using the function spline
in MATLAB or Octave. Plot the computed spline. 2
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