
2 Computation with Floating-Point Numbers

2.1 Floating-Point Representation

The notion of real numbers in mathematics is convenient for hand computations and formula
manipulations. However, real numbers are not well-suited for computation on a calculator or
computer, because their numerical representation as a string of digits expressed in, say, base 10 can
be very long or even infinitely long. Examples include π,

√
2, e, and 1/3. In practice, computers

store numbers with finite precision. Numbers and arithmetic used in scientific computation should
meet a few general criteria:

• Numbers should have modest storage requirements.

• Arithmetic operations should be efficient to carry out.

• A level of standardization, or portability, is desirable. Results obtained on one computer
should closely match the results of the same computation on other computers.

Standardized methods for representing numbers on computers have been established by the Institute
of Electrical and Electronics Engineers (IEEE) to satisfy these basic goals. This lecture is concerned
with floating-point numbers. The floating-point we will consider are available on most modern
computing systems.1 They are sometimes referred to as double precision floating-point numbers.
A precise definition is given below. We comment on other kinds of floating-point numbers used
in computers at the end of this section. In this lecture the term “floating-point number” always
means a number that can be exactly represented by a double-precision floating-point number.

Differently from real numbers, there are only finitely many floating-point numbers. In particular,
there is a smallest (and largest) floating-point number. In between there are also necessarily many
gaps of numbers that cannot be represented exactly.

In hand computations, we usually represent numbers in terms of decimal digits. For instance,

x = 1.29 · 102 (1)

is one way to write the number 129. This way of writing numbers is sometimes called scientific

notation. The 1.29 part is called the mantissa, 10 the base, and 2 the exponent. Another way to
write x is 1 · 102 + 2 · 101 + 9 · 100. If, like in equation (1), the mantissa always has 3 decimal
digits and the exponent has one decimal digit, then the distance between the number 1, which can
be represented exactly, and a closest different representable number, 0.99 · 100, is 1 · 10−2. The
largest representable number in this scheme is 9.99 · 109 and the closest distinct positive number
is 9.98 · 109. Their distance is 9.99 · 109 − 9.98 · 109 = 1 · 107, which is large. Thus, the distance

0Version September 9, 2013
1Notable exceptions include graphics processors.

1



between distinct representable numbers grows with their magnitude; it can be large for numbers of
large magnitude.

Similarly to (1), in base 2, the number

y = 1.01 · 22

may be a suitable representation of 101 = 1 · 22 + 0 · 21 + 1 · 20, which is a binary representation of
the number 5 in base 10. A binary digit is referred to as a bit.

Computers represent floating-point numbers using base 2. Floating-point numbers are generally
stored in the form

x = ±(1 + f) · 2e, (2)

where f is referred to as the fractional part and e as the exponent. The fractional part f satisfies
0 ≤ f < 1 and is stored in 52 bits. That means that 252f is an integer in the interval [0, 252).
The exponent is restricted to be an integer in the interval −1022 ≤ e ≤ 1023. Instead of storing e,
computers store e + 1023 using 11 bits. (This obviates the need to store the sign of e.) The sign
of x is stored in a separate bit. Thus, the floating-point number x is stored in 52 + 11 + 1 = 64
bits. Note that the number 1 in the (1 + f) part does not have to be stored explicitly. The binary
representation (2) of x is said to be normalized, because of the leading 1 in 1 + f .

Also note that 11 bits can store more integer values than the exponent e is allowed to take on
as defined above. The extra values are reserved for some special cases discussed below.

The representable floating-point numbers are equidistant in each interval 2e ≤ x ≤ 2e+1, with
distance 2e−52. The constant eps, or machine epsilon, is defined to be the distance between 1 and
the next largest floating point number. In a relative sense, eps is as large as the gaps between
floating-point numbers get. Let the function fl(x) return the closest floating-point number to the
real number x. Then

|x − fl(x)| ≤ eps

2
|x|. (3)

In IEEE arithmetic, we have eps = 2−52, i.e., eps ≈ 2.2 · 10−16. The symbol ≈ stands for approxi-
mately equal to. You can find out the actual value of eps by first typing format long and then eps

in Octave or MATLAB.
The property (3) also can be stated in the form that for every real number x, there is an ǫ with

|ǫ| ≤ eps/2, such that
fl(x) = x(1 + ǫ). (4)

Example 2.1

Neither the decimal numbers 0.7 nor 0.1 can be stored exactly as floating-point numbers (2). We
have fl(0.7)/fl(0.1) 6= 7. 2

2



Example 2.2

The largest representable normalized floating point number, realmax, corresponds to f = 1 − eps

and e = 1023 in (2), i.e.,
realmax = (2 − eps) · 21023.

Thus, realmax ≈ 1.80 · 10308. 2

Real numbers larger than realmax cannot be represented by floating-point numbers. The special
“floating-point number” defined by f = 0 and e = 1024 is called Inf. If in the course of arithmetic
operations, a variable, say y, becomes larger than realmax, then y is set to Inf. Replacing a large
real number by Inf is referred to as overflow.

Inf plus a finite number is defined to be Inf. Moreover, Inf + Inf gives Inf. The expression 1/Inf

is defined to be 0. Computations that yield undefined numbers, such as 1/0, 0/0, and Inf/Inf are
represented by the special symbol NaN, which stands for “Not a Number.” NaN is defined by f 6= 0
and e = 1024. Arithmetic operations with NaN return NaN. For example, NaN + 1 yields NaN.

The smallest representable positive normalized floating-point number, 2−1022, is denoted by
realmin and represented by f = 0 and e = −1022. Thus, realmin ≈ 2.2 ·10−308. If during arithmetic
operations an intermediate result, say y, is smaller than realmin, then y is set to zero unless
unnormalized floating-point number are used. Replacing a tiny real number by zero is referred to
as underflow.

Example 2.3

Let y = 10−308. First divide y by 10 and then multiply by 10308. On a computer that does not use
unnormalized floating-point numbers, we obtain the answer zero due to underflow. This illustrates
that underflow may lead to large errors if the intermediate underflown quantity subsequently is
multiplied by a large number. 2

Some computers allow a representation of numbers between eps · realmin and realmin by de-
normalized floating-point numbers. Then numbers as small as 0.49 · 10−323 can be represented.
Generally, this feature is not important, but it leads to more accurate answers in certain computa-
tions.

Exercise 2.1

Determine the decimal representation of the binary numbers (a) 10, (b) 1011. 2

Exercise 2.2

Determine the binary representation of the decimal number (a) 3, (b) 17. 2

3



Exercise 2.3

Determine whether your computer uses unnormalized floating-point numbers. 2

Exercise 2.4

If you own a hand-held calculator or have access to one (for example, one of the popular graphing
calculators), determine its machine epsilon. 2

Many computers also can do arithmetic with single precision floating-point numbers. These
numbers are stored in 32 bits each. They require half the computer memory than double precision
floating-point numbers. Since they have fewer bits in their mantissa and exponent, computed results
may be more affected by round-off errors (defined below), underflow, or overflow, than when double
precision floating-point numbers are used. Some of the fastest parallel computers available carry
out arithmetic with quadruple precision floating-point numbers. Each such floating-point number
is stored in 128 bits. This allows more bits for the mantissa and exponent than in double precision
floating-point numbers.

2.2 Floating-Point Arithmetic

Arithmetic operations on floating-point numbers do not always result in another floating-point
number. For example, 1 and 10 are floating-point numbers, but 1/10 is not. The result of an
arithmetic computation will be stored by the computer as a floating-point number. If the exact
result is not a floating-point number, an error is introduced. This error is referred to as round-off

error.
Let the symbol ∗ represent one of the four basic mathematical arithmetic operations: addition,

subtraction, multiplication, or division. Let ◦ denote its floating-point analogue. Computers use
these operations to carry out most computations. We would like that for any floating-point numbers
x and y,

x ◦ y = fl(x ∗ y).

Combining this property and (4) shows that for all floating-point numbers x and y, there is an ǫ
with |ǫ| ≤ eps/2, such that

x ◦ y = (x ∗ y)(1 + ǫ). (5)

The properties (4) and (5) are satisfied by arithmetic carried out on computer systems that satisfy
the IEEE standard, except when overflow or underflow occur. The error incurred in (5) also is
called a round-off error.

4



Example 2.4

Computers do not know the functions cos(x), sin(x), and ex for general values of x. Approximations
of their values are computed by evaluating rational functions

r(x) = p(x)/q(x),

where p and q are suitable polynomials. Note that the evaluation of r(x) only requires the four
basic arithmetic operations. 2

Often the use of floating-point numbers and floating-point arithmetic does not affect the outcome
significantly, when compared with applying exact arithmetic on the corresponding real numbers.
However, some care should be taken in the design of numerical methods to maintain high accuracy.

Example 2.5

We would like to compute the Euclidean norm of the vector

x =

[

10160

10100

]

.

Straightforward computation in MATLAB or Octave using the definition of the Euclidean norm

‖x‖ =

√

(10160)2 + (10100)2

gives the result Inf, because the quantity
(

10160
)2

cannot be represented in floating-point arithmetic.
However, the norm of x is small enough to represent. We can compute ‖x‖ if we avoid the squaring
of the first component. This can be achieved by expressing x as

x = 10160

[

1
10−60

]

.

and evaluating

‖x‖ = 10160
√

12 + (10−60)2.

2

We conclude this lecture with definitions of the absolute and relative errors in an available
approximation x̃ of an error-free real quantity x:

absolute error in x = x̃ − x (6)

and

relative error in x =
x̃ − x

|x| . (7)

5



Example 2.6

The solutions of the quadratic equation

x2 + ax + b = 0 (8)

are given by

x1,2 =
−a ±

√
a2 − 4b

2
. (9)

Let a = −500000000 and b = 1, and apply MATLAB, using IEEE arithmetic, to compute the roots.
We obtain the computed values

>> x1=(-a+sqrt(a^2-4*b))/2

x1 =

500000000

>> x2=(-a-sqrt(a^2-4*b))/2

x2 =

0

It is obvious that zero is not a root of (8). Taylor expansion of the expressions (9) yields

x1 = 5 · 108 − 2 · 10−9 − 1.6 · 10−26 − . . . ,

x2 = 2 · 10−9 + 1.6 · 10−26 − . . . .

Hence, the absolute errors in x1 and x2 are of about the same magnitude

x1 − x1 ≈ −2 · 10−9,

x2 − x2 ≈ 2 · 10−9,

while the relative errors are of very different magnitudes,

x1 − x1

x1
≈ −4 · 10−18,

x2 − x2

x2
≈ −1,

6



Thus, the larger root is determined with a very small relative error, while the relative error in
the computed approximation of the smaller root is very large. The loss of relative accuracy in
the smaller root depends on that this root is determined by adding quantities of large magnitude
(about 5 · 108) and of opposite sign. The computed approximation x2 has no correct digit. This
effect is referred to as cancellation of correct digits.

A more accurate approximation of x2 can be determined as follows. Observe that

x2 + ax + b = (x − x1)(x − x2) = x2 − (x1 + x2)x + x1x2.

It follows that b = x1x2. Therefore,
x2 = b/x1. (10)

Determining x1 as described above and then substituting this approximation into (10) yields an
approximation x2 of x2 of high relative accuracy; see Exercise 2.5. 2

Exercise 2.5

Let x1 be the computed approximation of Example 2.6 of the larger root of equation (8). Compute
an approximation of the smaller root by evaluating (10) with x1 replaced by x1. What is the
relative error in the so obtained computed approximation of x2? 2

Exercise 2.6

Give an example when the properties (3) and (4) are violated. 2

Exercise 2.7

What can we say about the property (5) when (4) is violated? 2

Exercise 2.8

Discuss the computation of f1(x) =
√

1 − x2 for values of x with eps < x <
√

eps. Assume that the
computed value of the square-root function satisfies

fl(
√

x) =
√

x(1 + ǫ).

Compare the results with those obtained by evaluating f2(x) =
√

(1 − x)(1 + x) and f3(x) =
√

(1 − x)
√

(1 + x). 2

7



Exercise 2.9

Consider a computer with 4 digits of precision on which floating-point numbers x = d1.d2d3d4 . . .·10e

are represented by fl(x) = d1.d2d3d4 · 10e. Here each dj and e represent one decimal digit. (a)
Determine the computed value of 100.0 + 0.001 on this computer. (b) The exact solution of the
linear system of equations

[

0.001 100.0
100.0 100.0

]

x =

[

100.0
0

]

is close to x = [−1, 1]T . Solve this system by Gaussian elimination (without pivoting) on this
computer. What is the answer? What is the norm of the error? 2

Exercise 2.10

We would like to determine the value of the sum

S∞ =

∞
∑

j=1

1

j4

and therefore write an Octave or MATLAB program to sum the first terms. Specifically, sum the
first n terms in order to compute the partial sum

Sn = 1 +
1

24
+

1

34
+ . . . +

1

n4
,

where n is chosen so that fl(Sn + 1
(n+1)4

) = fl(Sn). What is n (roughly)?

In order to determine whether the computed value Sn is an accurate approximation of S∞,
compute the sum

Ŝ2n =
1

(2n)4
+

1

(2n − 1)4
+ . . . +

1

24
+ 1.

where summation is carried out in the order indicated. Are Ŝ2n and Sn the same? If not, then
explain why they are not.

Exercise 2.11

Sum the three numbers 1, 1020, and −1020 in different ways. First sum 1 + 1020 − 1020 (in order)
and then evaluate 1020 +1−1020 (in order). Are the computed sums the same? If not, then explain
why the sums are different. 2

Exercise 2.12

Discuss how cos(x) − 1 can be evaluated accurately for x-values close to zero. 2

8



Exercise 2.13

How can the norm of an m-vector be computed so that unnecessary overflow is avoided? Use the
approach of Example 2.5. Write an m-file that defines a function for the evaluation of vector norm.
2

9


