
3 Linear Systems of Equations and LU Factorization

Many computational problems require the solution of linear systems of equations

Ax = b (1)

with an n × n matrix

A =















a1,1 a1,2 . . . a1,n−1 a1,n

a2,1 a2,2 . . . a2,n−1 a2,n

...
...

...
...

an−1,1 an−1,2 . . . an−1,n−1 an−1,n

an,1 an,2 . . . an,n−1 an,n















and a right-hand side
b = [b1, b2, . . . , bn]T .

The matrix A typically represents a model and the right-hand side b contains data to which one
seeks to fit the model.

The number of equations, n, can be large in many scientific applications. For instance, problems
in structural analysis frequently give rise to linear systems of equations of order about 106. These
systems are commonly solved on computers with several processors. Some applications require
the solution of linear systems of equations with 108 or more unknowns. The solution of so large
systems is a challenge even on the fastest computers available. This lecture discusses methods for
the solution of linear systems of equations based on Gaussian elimination.

3.1 Gaussian elimination and LU factorization

The most commonly used methods for solving linear systems of equations are based on Gaussian
elimination. Gaussian elimination is a method for transforming a linear system of equations (1) to
an equivalent system of equations

Ux = b̃ (2)

with an upper triangular matrix

U =















u1,1 u1,2 · · · u1,n−1 u1,n

u2,2 · · · u2,n−1 u2,n

. . .
...

...
un−1,n−1 un−1,n

un,n















.

0Version September 24, 2013

1



and a modified right-hand side vector b̃. Linear systems with an upper triangular matrix are easy
to solve by back substitution. This is the process of determining the solution of (2) by computing
the entries of the solution vector x from the bottom up as follows. Let x = [x1, x2, . . . , xn]T and
b̃ = [b̃1, b̃2, . . . , b̃n]T . Then we use the last equation of (2),

un,nxn = b̃n

to determine xn. The penultimate equation

un−1,n−1xn−1 + un−1,nxn = b̃n−1

can be written as
un−1,n−1xn−1 = b̃n−1 − un−1,nxn,

which we solve for xn−1. We proceed in this manner to compute the components xn−2, xn−3, . . . , x1,
in order, of the solution x of (2).

Frequently, one would like to apply the same model to more than one set of measured data
vectors (right-hand sides). One then needs to solve the system (1) for several right-hand sides, all
of which may not be available at the same time. The upper triangular matrix U is independent
of the right-hand side b in (1), however, the vector b̃ in the upper triangular system (2) is not.
We would like to determine the vector b̃ associated with each right-hand side b without having to
recompute U . It turns out that this is possible and computationally inexpensive. It can be achieved
by storing some auxiliary quantities, determined during the computation of U from A, in an n× n
lower triangular matrix with unit diagonal,

L =



















1
ℓ2,1 1
ℓ3,1 ℓ3,2 1
...

...
. . .

ℓn−1,1 ℓn−1,2 · · · 1
ℓn,1 ℓn,2 · · · 1



















.

Then we have
A = LU. (3)

This factorization is called the LU factorization of A.
Given the LU factorization of the matrix A, we can solve the linear system (1) in two steps:

substitute (3) into (1) to obtain
LUx = b,

and then solve the triangular systems, in order,

Ly = b, (4)

Ux = y. (5)

2



The first system is solved by computing the components of y = [y1, y2, . . . , yn]T in the order of
increasing index, i.e., y1 is computed from the first equation of (4), then y2 is computed from the
second equation of (4), and so on, until the last component yn is computed from the last equation
in (4). This solution method is known as forward substitution. One can show that the vector y

obtained in this manner is the vector b̃ in (2).

Example 3.1

Consider the solution of the linear system of equations Ax = b with

A =

[

6 2
3 4

]

, b =

[

10
11

]

.

It is easy to verify that the matrices in the LU factorization of A are given by

L =

[

1 0
1

2
1

]

, U =

[

6 2
0 3

]

.

Solving
Ly = b

by forward substitution yields

y =

[

10
6

]

and continuing by solving
Ux = y

by back substitution gives the solution

x =

[

1
2

]

.

2

3.2 Computation of the LU factorization

We illustrate the computation of the triangular factors L and U with a 4 × 4 matrix. Let

A =









2 2 0 1
1 2 2 0
2 1 1 2
4 2 0 1









.

The first step of Gaussian elimination entails subtracting suitable multiples of the first row from
rows 2 through 4, so that the (2, 1), (3, 1), and (4, 1) entries in the matrix so obtained vanish. We

3



store these multiples in the first column below the diagonal of a lower triangular matrix L with
unit diagonal. For example, we subtract 1/2 times the first row from the second row and store the
multiple 2 in the (2, 1)-entry of L. We obtain the matrices

A′ =









2 2 0 1
1 2 −1/2

−1 1 1
−2 0 −1









, L =









1
1/2 1
1 1
2 1









.

To proceed, we subtract suitable multiples of the second row of the matrix A′ from rows three
and four and store these multiples in the second column below the diagonal of L. Specifically, we
subtract −1 times row 2 from row 3, and −2 times row 2 from row 4. The multiples are stored
below the diagonal in the second column of L This gives the matrices

A′′ =









2 2 0 1
1 2 −1/2

3 1/2
4 −2









, L =









1
1/2 1
1 −1 1
2 −2 1









.

Finally, we subtract 4/3 times row 3 of A′′ from row 4 and record the multiple 4/3 in the
(4, 3)-entry of L. This yields the upper triangular matrix U as well as the lower triangular matrix
L,

U =









2 2 0 1
1 2 −1/2

3 1/2
−8/3









, L =









1
1/2 1
1 −1 1
2 −2 4/3 1









.

One can verify by direct computation that L and U are the desired factors in the LU factor-
ization (3) of A. To summarize, the upper triangular matrix U is determined in the standard
way by Gaussian elimination of A, and the lower triangular matrix L is obtained by recording the
multiples used in the subtractions in Gaussian elimination. The following algorithm computes the
LU factorization of an n × n matrix A.

Algorithm 3.1: Computation of the LU factorization

INPUT: n × n matrix A = [aj,k]
n
j,k=1

.

OUTPUT: Lower triangular n × n matrix L = [ℓj,k]
n
j,k=1

, upper triangular n × n matrix
U = [uj,k]

n
j,k=1

.

Let L be the n × n identity I. Let U := A.

For k = 1, 2, . . . , n − 1,

4



For j = k + 1, k + 2, . . . , n,

ℓj,k :=
uj,k

uk,k
; uj,k = 0

For i = k + 1, k + 2, . . . , n,

uj,i := uj,i − ℓj,kuk,i

End i

End j

End k

Exercise 3.1

Determine the LU factorization of the matrix

A =

[

2 1
4 3

]

.

2

Exercise 3.2

Solve Ax = b, where A is the matrix in Exercise 3.1 and b = [3, 5]T , by using the LU factorization
from Exercise 3.1. 2

Exercise 3.3

Write a MATLAB/Octave function for computing the LU factorization of a general n × n matrix.
The function call should look like

function [L,U]=lufactors(A)

Test the code on a few examples. 2

Exercise 3.4

Write a MATLAB/Octave function for the solution of the lower triangular system (4) by forward
substitution. The function call should look like

function [y]=forwardsubst(L,b)

Test the code on a few examples. 2

5



Exercise 3.5

Write a MATLAB or Octave function for the solution of the upper triangular system (5) by back
substitution. The function call should look like

function [x]=backsubst(U,y)

Test the code on a few examples. 2

t f(t)

1 11.0
2 12.5
3 14.0

Table 1: Exercise 3.6: Available function values.

Exercise 3.6

The values of a function f(t) have been determined for t = 1, 2, 3; see Table 1. Fit a quadratic
polynomial p(t) = c1 + c2t + c3t

2 to the function. Thus, our task is to determine the coefficients cj

so that the p(t) = f(t) for t = 1, 2, 3. This can be done by solving the system of equations







c1 + c2 + c3 = 11.5
c1 + c2 2 + c3 4 = 12.0
c1 + c2 3 + c3 9 = 14.5

Solve the system by LU factorization of the matrix and plot the computed polynomial as a
function of t for 1 ≤ t ≤ 3. The latter can be carried out in several steps as follows:

1. Write a MATLAB/Octave function mypoly for computing the polynomial p(t) for a desired
value of t. Express the polynomial in the form

mypoly=c(1)+c(2)*t+c(3)*t.^2;

The period before ˆ allows t to be a vector.

2. Generate the vector t=[1:0.05:3] in MATLAB and let s=mypoly(t).

3. Plot the polynomial, e.g., with the command plot(t,s).

The function value at t = 2 turned out to be erroneous. The correct value is 12.5. How can the
new coefficients for the polynomial be determined efficiently? Plot the new polynomial together
with the previous one. This requires the use of the MATLAB command hold. 2

6



Exercise 3.7

This example applies LU factorization to decoding. Assign integers to letters according to A-1,
B-2, C-3, ...., Z-26, and space-27. Assume that the (unknown) message has been broken up into
3 × 1 vectors and multiplied by the matrix

A =





2 3 8
0 1 4
1 0 −3





to get the encoded message

162, 48, 0, 51, 9, 11, 125, 31, 15, 85, 27,−3, 66, 22,−1, 233, 85,−30, 241, 93,−42, 187, 79,−40, 257, 113,−68

Assume that we receive three consecutive integers at a time and we would like to determine the
message as quickly as possible. We can do this by solving a sequence of linear systems of equations

Ax =





162
48
0



 , Ax =





51
9
11



 , . . .

using the LU factorization of the matrix A. What are the factors? What is the message?
Assume that both the original message and the encoded one are available, but not the 3 × 3

matrix A. Can one determine A? If so, describe how this can be done.
Assume that A is singular. Can one then determine the message? 2

Exercise 3.8

How many arithmetic floating point operations are required to compute the upper triangular factor
U in the LU factorization of an n × n matrix A? Provide an estimate of the form cn2. Determine
the constant c. 2

Exercise 3.9

How many arithmetic floating point operations are required for the solution of (4) by forward
substitution when L is an n × n lower triangular matrix? Provide an estimate similarly as in
Exercise 3.8. 2

Exercise 3.10

How many arithmetic floating point operations are required for the solution of (4) by back substi-
tution when U is an n× n upper triangular matrix? Provide an estimate of the form cn2 similarly
as in Exercise 3.8. 2

7



3.3 LU factorization with pivoting

Consider the solution of a linear system of equations (1) with

A =

[

0 1
−1 1

]

, x =

[

x1

x2

]

, b =

[

2
1

]

. (6)

The matrix has determinant 1. It therefore is nonsingular and the linear system of equations (1)
has a unique solution. In fact, it is easy to verify that the solution is x = [1, 2]T .

Apply Algorithm 3.1 to determine the LU factorization of the matrix A. You will see that the
algorithm breaks down already for k = 1, because u1,1 = 0 causes division by zero. We conclude
that LU factorization as described by Algorithm 3.1 cannot be applied to the solution of all linear
systems of equations with a nonsingular matrix.

As you already may have noticed, the system of equations (1) can be solved quite easily without
LU factorization by applying back substitution in an appropriate order. We first determine the
solution component x2 from the first equation of (1), 1 · x2 = 2, and compute x1 from the second
equation, −1 · x1 + 1 · x2 = 1. Note that your MATLAB/Octave function backsubst from Exercise
3.5 cannot be applied to carry out this variant of back substitution.

There is a simple remedy that allows the application of your MATLAB function backsubst

to the solution of (1), namely to interchange the rows of the matrix and right-hand side before
solution. This gives the matrix and right-hand side vector

Ã =

[

−1 1
0 1

]

, b̃ =

[

1
2

]

.

The matrix Ã is upper triangular and therefore the linear system of equations

Ãx = b̃,

can be solved by standard back substitution. We recall that interchanging rows of a linear system
of equations does not change the solution.

The interchange of rows is commonly referred to as pivoting and the divisors uk,k in Algorithm
3.1 as pivot elements or simply pivots. Pivoting has to be employed whenever a pivot uk,k in
Algorithm 3.1 vanishes. One can show that all linear systems of equations with a square nonsingular
matrix can be solved by Gaussian elimination with pivoting, or equivalently, by LU factorization
with pivoting. The factor L is not lower triangular when pivoting is employed.

Example 3.2

The function lu in MATLAB and Octave determines the LU factorization of a matrix A with
pivoting. When applied to the matrix (6), it produces

L =

[

0 1
1 0

]

, U =

[

−1 1
0 1

]

.

8



Thus, L is not lower triangular. The matrix L can be thought of as a lower triangular matrix with
the rows interchanged. More details on the function lu are provided in Exercise 3.11. 2

In exact arithmetic, we can compute the LU factorization of any nonsingular 2× 2 matrix with
a nonvanishing (1, 1) element. However, in floating point arithmetic, the computed factors might
not be accurate.

Example 3.3

Apply a MATLAB or Octave implementation of Algorithm 3.1 on a standard PC to the matrix

A =

[

10−20 1
1 1

]

.

We obtain the factors

L =

[

1 0
1020 1

]

, U =

[

10−20 1
0 −1020

]

,

where the entry u2,2 of U is computed as 1 − 1020 · 1, which is stored as −1020.
The relative error in u2,2 is

−1020 − (1 − 1020)

1 − 1020
≈ 10−20,

which is tiny; however, the absolute error in u2,2, given by −1020 − (1 − 1020) = −1, is not.
Multiplying L and U yields

LU =

[

10−20 1
1 0

]

,

which is not close to the matrix A. The error in the matrix LU is caused by round-off errors
during the computations of u2,2 and by the fact that there are intermediate quantities of very large
magnitude are formed during the computations. The difficulties are caused by the quantity −1020.
2

Example 3.4

A row interchange in the matrix of the above example remedies the accuracy problems encountered.
Let

Ã =

[

1 1
10−20 1

]

.

Then a MATLAB or Octave implementation of Algorithm 3.1 determines the LU factorization

L̃ =

[

1 0
10−20 1

]

, Ũ =

[

1 1
0 1

]

.

9



Multiplication of L̃ and Ũ gives the matrix Ã in floating point arithmetic. The high accuracy
depends on that the matrices L̃ and Ũ do not contain entries of large magnitude. 2

The above example illustrates that row interchange can improve the accuracy significantly in
the computed factors L and U , also when in exact arithmetic no row interchanges are required.
The row interchange gave a lower triangular factor L̃ with entries of significantly smaller magnitude
than the magnitude of the entries of the lower triangular matrix L of Example 3.3. Looking at
Algorithm 3.1, we see that the magnitude of all subdiagonal entries ℓj,k of L is bounded by one, if
|uk,k| is larger than or equal to

max{|uk+1,k|, |uk+2,k|, . . . , |un,k|}

for k = 1, 2, . . . , n − 1. This suggests that we interchange the rows of the U -matrix during the
factorization process to achieve that

|uj,k|

|uk,k|
≤ 1, j = k + 1, k + 2, . . . , n. (7)

LU factorization with the rows (re)ordered so that (7) holds is commonly referred as LU factoriza-

tion with partial pivoting. There are also other pivoting strategies. We will comment on some of
them in Exercises 3.15 and 3.16.

When we solve a linear system of equations and interchange the rows of the matrix, we also
need to interchange the corresponding rows of the right-hand side in order to obtain the correct
solution. However, LU factorization with partial pivoting can be carried out without access to the
right-hand side. We have to keep track of the row interchanges carried out during the factorization,
so that we can apply them to the right-hand side when the latter is available. We do this by
applying all the row interchanges carried out during the LU factorization to the identity matrix.
This gives a permutation matrix P . Permutation matrices are matrices obtained by interchanging
rows or columns in the identity matrix. They have precisely one nonvanishing entry (one) in each
row and column. A permutation matrix is an example of a matrix, whose transpose is its inverse.

Example 3.5

Let

P =









0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0









.

Then its transpose is given by

P T =









0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0









10



and it is easy to verify that P T P = PP T = I. 2

In order to illustrate LU factorization with partial pivoting, we apply the method to the matrix

A =









2 2 0 1
1 2 2 0
2 1 1 2
4 2 0 1









.

which we factored in Section 3.2 without partial pivoting pivoting. We denote the 4×4 permutation
matrix, which keeps track of the row interchanges by P ; it is initialized as the identity matrix and
so is the lower triangular matrix L in the factorization. We set U = A. The first step of the
factorization process is to determine the entry of largest magnitude in column 1. This is the entry
4 in row 3. We therefore swap rows 1 and 4 of the matrices U and P to obtain,

U =









4 2 0 1
1 2 2 0
2 1 1 2
2 2 0 1









, P =









0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0









.

We then subtract suitable multiples of row 1 of U from rows 2 through 4 to create zeros in the first
column of U below the diagonal. The multiples are stored in the subdiagonal entries of the first
column of the matrix L. This gives the matrices

U =









4 2 0 1
0 3/2 2 −1/4
0 0 1 3/2
0 1 0 1/2









, L =









1 0 0 0
1/4 1 0 0
1/2 0 1 0
1/2 0 0 1









, P =









0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0









.

We can verify that PA = LU by direct evaluation of the matrix product in the right-hand side.
We now proceed with columns 2 of the matrix U . The diagonal entry on column 2 is of larger

magnitude than the subdiagonal entries of this column. Pivoting therefore is not required. Since
the (3, 2) entry of U vanishes, we proceed to eliminate the entry (4, 2). This is done by substracting
2/3 times row 2 from row 4. This yields the matrix U below. We update the lower triangular
matrix L by recoding the multiple 2/3 in entry (4, 2). This gives

U =









4 2 0 1
0 3/2 2 −1/4
0 0 1 3/2
0 0 −4/3 2/3









, L =









1 0 0 0
1/4 1 0 0
1/2 0 1 0
1/2 2/3 0 1









, P =









0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0









.

We turn to the last 2 entries of column 3 of U , and notice that the last entry has the largest
magnitude. Hence, we swap rows 3 and 4 of the matrices U and P , and we interchange the

11



subdiagonal entries in rows 3 and 4 of L to obtain

U =









4 2 0 1
0 3/2 2 −1/4
0 0 −4/3 2/3
0 0 1 3/2









, L =









1 0 0 0
1/4 1 0 0
1/2 2/3 1 0
1/2 0 0 1









, P =









0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0









.

The final step of the factorization is to subtract −3/4 times row 3 of U from row 4 and store −3/4
in the subdiagonal entry of column 3 of L. This yields

U =









4 2 0 1
0 3/2 2 −1/4
0 0 −4/3 2/3
0 0 0 2









, L =









1 0 0 0
1/4 1 0 0
1/2 2/3 1 0
1/2 0 −3/4 1









, P =









0 0 0 1
0 1 0 0
1 0 0 0
0 0 1 0









.

We can verify by direct computation that

PA = LU. (8)

When applying this factorization to the solution of a linear system of equations (1), we first
multiply the right-hand side b by the permutation matrix P to obtain

LUx = PAx = Pb.

We then solve Ly = Pb by forward substitution and Ux = y by back substitution.
Assume that we apply LU factorization with partial pivoting to an n × n matrix A and find

that for some k all entries uj,k, j = k, k + 1, . . . , n of U vanish. Then pivoting does not help us to
proceed and LU factorization with partial pivoting breaks down. One can show that this situation
only can occur when A is singular. Thus, LU factorization with partial pivoting can be applied to
solve all linear systems of equations with a nonsingular matrix.

Partial pivoting secures that the entries of L are all bounded by one in magnitude. However,
the entries of U may become large; see Exercise 3.17 for an illustration. Let ρ denote the largest
magnitude of any of the entries ui,j generated during the execution of a variant of Algorithm 3.1 with
partial pivoting. This quantity is referred to as the growth factor. The accuracy of the computed
lower and upper triangular factors, denoted by fl(L) and fl(U), respectively, of PA depends on ρ.
One can show that

‖fl(L)fl(U) − PA‖

‖PA‖
= ρO(eps).

Thus, a large growth factor ρ may destroy the accuracy of the LU factorization. However, for many
matrices ρ is modest and LU factorization with partial pivoting yields an accurate factorization in
the presence of round-off errors. LU factorization without partial pivoting may yield poor accuracy.

12



Exercise 3.11

(a) Apply the MATLAB/Octave function lu to the matrix (6) by using the call [L, U ] = lu(A). What
is L? Read the help file for a description of L. (b) Use instead the function call [L, U, P ] = lu(A).
What are L, U , and P? 2

Exercise 3.12

Determine the LU factorization with partial pivoting of the matrix

A =

[

2 1
4 3

]

by hand computations. 2

Exercise 3.13

Solve Ax = b, where A is the matrix in Exercise 3.12 and b = [3, 5]T , by using the LU factorization
from Exercise 3.12 2

Exercise 3.14

The storage of the permutation matrix P is clumsy. After all, we only need to keep track of the
row interchanges carried out and this does not require storage of an n×n matrix with most entries
zero. Describe a more compact way to represent the permutation information. 2

Exercise 3.15

If an entry uk,k in Algorithm 3.1 vanishes, then we could interchange columns instead of rows to
obtain a nonvanishing replacement for uk,k. Mention a difficulty with this approach that is not
present when interchanging rows. Hint: How does the solution change when we interchange rows
and columns? 2

Exercise 3.16

In LU factorization with complete pivoting rows as well as columns are interchanged to maximize
the denominator uk,k in each step. Discuss possible advantages and disadvantages of complete
pivoting? 2

13



Exercise 3.17

Determine the growth factor for LU factorization with partial pivoting of the almost lower triangular
n × n matrix

A =



















1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1 1
...

...
...

. . .
...

−1 −1 −1 · · · 1



















.

2

14


