
5 Orthogonal Vectors and Matrices

Orthogonal vectors and matrices are of fundamental importance in linear algebra and scientific
computing. Orthogonal matrices are used in QR factorization and singular value decomposition
(SVD) of a matrix. The former is applied in numerical methods for least-squares approximation
and eigenvalue computations, the latter is an important tool for data reduction as well as for least-
squares approximation. This lecture first considers orthogonal vectors and then defines orthogonal
matrices. Applications will be discussed in subsequent lectures.

5.1 Orthogonal Vectors

A pair of vectors u,v ∈ R
m is said to be orthogonal if

(u,v) = 0.

In view of formula (14) of Lecture 1, orthogonal vectors meet at a right angle. The zero-vector 0

is orthogonal to all vector, but we are more interested in nonvanishing orthogonal vectors.
The vectors in a set Sn = {vj}n

j=1
in R

m are said to be orthonormal if each pair of distinct
vectors in Sn is orthogonal and all vectors in Sn are of unit length, i.e., if

(vj ,vk) =

{
0, j 6= k,
1, j = k.

(1)

Here we have used that
(vk,vk) = vk

Tvk = ‖vk‖2;

cf. equations (6) and (7) of Lecture 1. We assume throughout this section that n ≤ m,
It is not difficult to show that orthonormal vectors are linearly independent; see Exercise 5.1

below. It follows that the m orthonormal vectors in the set Sm = {vj}m
j=1

form a basis for R
m.

Example 5.1

The vectors in the subset S3 = {ej}3

j=1
of R

5 are orthonormal. Here ej denotes the jth axis vector
of R

m; cf. (18) of Lecture 1. 2

Example 5.2

The vectors in the set S2 = {v1,v2} in R
2, defined by

v1 =
1√
2
[1, 1]T , v2 =

1√
2
[−1, 1]T ,
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are orthonormal. Moreover, these vectors form a basis for R
2. 2

An arbitrary vector v ∈ R
m can be decomposed into orthogonal components. Consider the set

of orthonormal vectors Sn = {vj}n
j=1

in R
m and regard the expression

r = v −
n∑

j=1

(vj ,v)vj . (2)

The vector (vj ,v)vj is referred to as the orthogonal component of v in the direction vj . Moreover,
the vector r is orthogonal to the vectors v1,v2, . . . ,vn. This can be seen by computing the inner
products (vk, r) for all k. We obtain

(vk, r) = (vk,v −
n∑

j=1

(vj ,v)vj) = (vk,v) −
n∑

j=1

(vj ,v)(vk,vj).

Using (1), the sum in the right-hand side simplifies to

n∑

j=1

(vj ,v)(vk,vj) = (vk,v),

which shows that
(vk, r) = 0

Thus, v can be expressed as a sum of the orthogonal vectors r,v1, . . . ,vn,

v = r +
n∑

j=1

(vj ,v)vj .

Example 5.3

Let v = [1, 2, 3, 4, 5]T and let the set S be the same as in Example 5.1. Then r = [0, 0, 0, 4, 5]T .
Clearly, r is orthogonal to the axis vectors e1, e2, e3. 2

Exercise 5.1

Let Sn = {vj}n
j=1

be a set of orthonormal vectors in R
m. Show that the vectors v1,v2, . . . ,vn are

linearly independent. Hint: Assume this is not the case. For instance, assume that v1 is a linear
combination of the vectors v2,v3, . . . ,vn, and apply (1). 2

Let the vectors a1,a2, . . . ,an in R
m, m ≥ n, be linearly independent. The Gram-Schmidt proce-

dure repeatedly uses the decomposition (2) to determine a set of orthonormal vectors q1,q2, . . . ,qn

such that
span{q1,q2, . . . ,qn} = span{a1,a2, . . . ,an}.

In other words, the Gram-Schmidt procedure determines an orthonormal basis for span{a1,a2, . . . ,an}.
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Gram-Schmidt procedure

for j = 1, 2, . . . , n
v := aj

for i = 1, 2, . . . , j − 1
ri,j := (qi,aj)

end

for i = 1, 2, . . . , j − 1
v := v − ri,jqi

end

rj,j := ‖v‖
qj := v/rj,j

end 2

A matrix interpretation of these recursion formulas shows that they determine a factorization
of the matrix A = [a1,a2, . . . ,an]. Note that the coefficients ri,j only are defined for i ≤ j. They
determine the upper triangular matrix

R =




r1,1 r1,2 . . . r1,n

r2,2 . . . r2,n

. . .
...

rn,n


 (3)

Define the matrix
Q = [q1,q2, . . . ,qn] ∈ R

m×n

with orthonormal columns. Then the recursion formulas of the Gram-Schmidt procedure show that

A = QR. (4)

This factorization is known as a QR factorization. We will use it for solving least-squares problems
in Lecture 6. QR factorization is a useful analogue of the LU factorization of Lecture 3 for matrices
A with more rows than columns.

Exercise 5.2

Let A = [a1,a2,a3] ∈ R
5×3. Determine the orthonormal columns q1,q2,q3 and scalars ri,j for

1 ≤ i ≤ j ≤ 3 by the Gram-Schmidt procedure. Show that the matrix Q = [q1,q2,q3] ∈ R
5×3 and

the upper triangular matrix R = [ri,j ] determine a QR factorization (4) of A. Hint: Start a matrix
A with one column and then add columns, one at a time. 2
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Exercise 5.3

Is the QR factorization (4) unique? That is, are there other factorizations of an m × n matrix A
with m ≥ n of the form (4) with a matrix Q with orthonormal columns and an upper triangular
matrix R? 2

The Gram-Schmidt procedure described above is sensitive to round-off errors introduced during
the computation of the columns qj , with the result that the computed columns may be far from
orthogonal when n (and therefore also m) are large. A rearrangement of the order of the com-
putations results in a numerically better behaved method. The following algorithm describes the
latter.

Modified Gram-Schmidt procedure

for i = 1, 2, . . . , n
vi := ai

for i = 1, 2, . . . , n
ri,i := ‖vi‖
qi := vi/ri,i

for j = i + 1, i + 2, . . . , n
ri,j := (qi,vj)
vj := vj − ri,jqi

end

end 2

In exact arithmetic the Gram-Schmidt and Modified Gram-Schmidt procedures yield the same
output. Thus, the coefficients ri,j and columns qi computed by the Modified Gram-Schmidt pro-
cedure also determine a QR factorization (4).

Exercise 5.4

Compute a QR factorization of the matrix

A =




1 1 1
1 2 4
1 3 9
1 4 16




using the modified Gram-Schmidt procedure. 2

Exercise 5.5

Let the vectors a1,a2, . . . ,an in the modified Gram-Schmidt procedure be linearly indepenedent
and in R

m with m ≥ n. How many arithmetic floating point operations does the procedure
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require? Only determine the dominant term of the form cmαnβ in the flop count, i.e., determine
the coefficient c and the powers α and β. 2

5.2 Orthogonal Matrices

A square matrix Q = [q1,q2, . . . ,qm] ∈ R
m×m is said to be orthogonal if its columns {qj}m

j=1

form an orthonormal basis for R
m. Since the columns q1,q2, . . . ,qm are linearly independent, cf.

Exercise 5.1, the matrix Q is nonsingular. Thus, Q has an inverse, which we denote by Q−1. It
follows from the orthonormality of the columns of Q that

QT Q =




(q1,q1) (q1,q2) · · · (q1,qm)
(q2,q1) (q2,q2) · · · (q2,qm)

...
...

...
(qm,q1) (qm,q2) · · · (qm,qm)


 = I,

where I denotes the identity matrix. Multiplying the above expression by the inverse Q−1 from
the right-hand side shows that

QT = Q−1.

Thus, the transpose of an orthogonal matrix is the inverse.

Example 5.4

The identity matrix I is orthogonal. 2

Example 5.5

The matrix

Q =

[
1/
√

2 1/
√

2

−1/
√

2 1/
√

2

]

is orthogonal. Its inverse is its transpose,

Q−1 = QT =

[
1/
√

2 −1/
√

2

1/
√

2 1/
√

2

]
.

2

Geometrically, multiplying a vector by an orthogonal matrix reflects the vector in some plane
and/or rotates it. Therefore, multiplying a vector by an orthogonal matrices does not change its
length. That is, the Euclidean norm of a vector u is invariant under multiplication by an orthogonal
matrix Q:

‖Qu‖ = ‖u‖. (5)
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This can be shown by using the properties (17) and (19) of Lecture 1. We have

‖Qu‖2 = (Qu)T (Qu) = uT QT (Qu) = uT (QT Q)u = uTu = ‖u‖2.

Taking square-roots of the right-hand side and left-hand side, and using that ‖ · ‖ is nonnegative
gives (5).

We remark thar the matrix Q in the QR factorization (4) is an orthogonal matrix only if m = n.

Exercise 5.6

What is the determinant of a real orthogonal matrix? Hint: Let A and B be square matrices of
the same size. Recall that det(AB) = det(A)det(B) and det(A) = det(AT ). 2

5.3 Householder Matrices

Matrices of the form

H = I − ρuuT ∈ R
m×m, u ∈ R

m\{0}, ρ =
2

uTu
, (6)

are known as Householder matrices. They are used in numerical methods for least-squares approx-
imation and eigenvalue computations. We will discuss the former application in the next section.

Householder matrices are symmetric, i.e., H = HT , and orthogonal. The latter property follows
from

HT H = H2 = (I − ρuuT )(I − ρuuT ) = I − ρuuT − ρuuT + (ρuuT )(ρuuT )

= I − ρuuT − ρuuT + ρu(ρuTu)uT = I − ρuuT − ρuuT + 2ρuuT = I,

where we have used the fact that ρuTu = 2; cf. (6).
Our interest in Householder matrices stems from the facts that they are orthogonal and the

vector u in their definition can be chosen so that an arbitrary (but fixed) vector w ∈ R
m\{0} is

mapped by H onto a multiple of the axis vector e1. We will now show how this can be done. Let
w 6= 0 be given. We would like

Hw = σ e1 (7)

for some scalar σ. It follows from (5) that

‖w‖ = ‖Hw‖ = ‖σ e1‖ = |σ|‖e1‖ = |σ|.

Therefore,
σ = ±‖w‖. (8)

Moreover, using the definition (6) of H, we obtain

σ e1 = Hw = (I − ρuuT )w = w − τ u, τ = ρuTw,

6



from which it follows that
τ u = w − σ e1.

The matrix H is independent of the scaling factor τ in the sense that the entries of the matrix H
do not change if we replace τ u by u. This is a consequence of the definition (6). We therefore may
choose

u = w − σ e1. (9)

This choice of u and either one of the choices (8) of σ give a Householder matrix that satisfies (7).
Nevertheless, in finite precision arithmetic, the choice of sign in (8) may be important. To see this,
let w = [w1, w2, . . . , wm]T and write the vector (9) in the form

u =




w1 − σ
w2

w3

...
wm




.

If the components wj for j ≥ 2 are of small magnitude compared to w1, then ‖w‖ ≈ |w1| and,
therefore, the first component of u satisfies

u1 = w1 − σ = w1 ± ‖w‖ ≈ w1 ± |w1|. (10)

We would like to avoid the situation that |w1| is large and |u1| is small, because then u1 is determined
with low relative accuracy; see Exercise 5.8 below. We therefore let

σ = −sign(w1)‖w‖, (11)

which yields
u1 = w1 + sign(w1)‖w‖. (12)

Then u1 is computed by adding numbers of the same sign and cancellation of significant digits is
avoided.

Example 5.6

Let w = [1, 1, 1, 1]T . We are interested in determining the Householder matrix H that maps w onto
a multiple of e1. The parameter σ in (7) is chosen so that |σ| = ‖w‖ = 2, i.e., σ is 2 or −2. The
vector u in (6) is given by

u = w ± σ e1 =




1 ± σ
1
1
1


 .
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The choice σ = 2 yields u = [3 1 1 1]T . We let σ be positive, because the first entry of w is
positive. Then we obtain ρ = 2/‖u‖2 = 1/6 and

H = I − ρ uuT =




−1/2 −1/2 −1/2 −1/2
−1/2 5/6 −1/6 −1/6
−1/2 −1/6 5/6 −1/6
−1/2 −1/6 −1/6 5/6


 .

It is easy to verify that H is orthogonal and maps w to −2e1. 2

In most applications it is not necessary to explicitly form the Householder matrix H. For
instance, the products of a Householder matrix H with a vector v can be evaluated efficiently using
the definition (6) of H, i.e.,

Hv = (I − ρuuT )v = v − (ρuTv)u.

The left-hand side is computed by first evaluating the scalar τ = ρuTv and then computing the
vector scaling and addition v− τ u. This way of evaluating Hw requires fewer arithmetic floating-
point operations than straightforward computation of the matrix-vector product using the entries
of H; see Exercise 5.11. Moreover, the entries of H do not have to be stored, only the vector u and
scalar ρ. The savings in arithmetic operations and storage is important for large-scale problems.

Exercise 5.7

Let w = [1, 2, 3]T . Determine the Householder matrix that maps w to a multiple of e1. Only the
vector u in (6) has to be computed. 2

Exercise 5.8

This exercise illustrates the importance of the choice of the sign of σ in (8). Let w = [1, 0.5 ·10−8]T

and let u be the vector in the definition of Householder matrices (6), chosen so that Hw = σe1.
MATLAB yields

>> w=[1; 5e-9]

w =

1.0000

0.0000

>> sigma=norm(w)

sigma =

8



1

>> u1=w(1)+sigma

u1 =

2

>> u1=w(1)-sigma

u1 =

0

where u1 denotes the computed approximations of the first component, u1, of the vectors u. How
large are the absolute and relative errors in the computed approximations u1 of the component u1

of the vectors u? 2

Exercise 5.9

Show that the product U1U2 of two orthogonal matrices U1 and U2 is an orthogonal matrix. Is the
product of k > 2 orthogonal matrices an orthogonal matrix? 2

Exercise 5.10

Let Q be an orthogonal matrix, i.e., QT Q = I. Show that QQT = I. Hint: First show that Q is
nonsingular. 2

Exercise 5.11

What is the count of arithmetic floating point operations for evaluating a matrix-vector product
with an n × n Householder matrix H when the representation (6) of H is used? Only u and ρ
are stored, not the entries of H. What is the count of arithmetic floating point operations for
evaluating a matrix-vector product with H when the entries of H (but not u and ρ) are available?
Correct orders of magnitude of the arithmetic work when n is large suffices. 2

Exercise 5.12

Let w1 and w2 be nonvanishing m-vectors. Determine an orthogonal matrix H̃, such that w2 =
H̃w1. Hint: Use two Householder matrices. 2
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Exercise 5.13

Let

v1 =




1
2
3
4


 , v2 =




0
1
2
3


 , v3 =




0
0
1
2


 .

Determine an orthonormal basis of span{v1,v2,v3}. Which method should be used? 2

Exercise 5.14

The 2 × 2 orthogonal matrix Q in Example 5.5 is an example of a Givens rotation. General 2 × 2
Givens rotations are matrices of the form

G =

[
c s

−s c

]
,

where s = sin(θ) and c = cos(θ) for some “angle” θ ∈ R. The matrix Q in Example 5.5 corresponds
to θ = π/4. Show that G is orthogonal for an arbitrary θ ∈ R. The matrix G is referred to as
a Givens rotation, because the matrix-vector product Gv can be interpreted as a rotaion of the
vector v by the angle θ. 2

Exercise 5.15

Givens rotations are convenient to use for computing the QR factorization of an almost upper
triangular matrix. Consider the matrix

A =




1 2 3
2 3 4

5 6


 .

Multiply A by the matrix

G1 =




c s
−s c

1




from the left with θ chosen so that the (2, 1)-entry of G1A vanishes. Then multiply the matrix
obtained from the left by

G2 =




1
c s

−s c
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with θ chosen so that the (3, 2)-entry of G2G1A vanishes. Then R = G2G1A is upper triangular.
Multiplying R from the left by GT

2
and GT

1
yields

A = GT
1 GT

2 R. (13)

The matrices GT
1

and GT
2

are orthogonal. Therefore, by Exercise 5.9, the matrix Q = GT
1
GT

2
is

orthogonal and it follows that the right-hand side of (13) is a QR factorization. Determine the
matrices G1, G2, and R. 2
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