
6 Least Squares Approximation by QR Factorization

6.1 Formulation of Least Squares Approximation Problems

Least-squares problems arise, for instance, when one seeks to determine the relation between an independent
variable, say time, and a measured dependent variable, such as position or velocity of an object.

Example 6.1

When we drop a ball a few feet above the ground with initial speed zero, it will fall towards the ground. In
the absence of air resistance, its speed is known to be a linear function of time (because the acceleration is
constant). However, measurements of the speed of the ball at different times during its fall to the ground
might not be on a straight line, due to air resistance, sudden wind bursts, and inaccuracies in the measure-
ments. Typically, we are interested in determining the relation between time and speed in the absence of
measurement errors and wind bursts. 2
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Figure 1: Example 6.2: The data points {xj , yj}, 1 ≤ j ≤ 5, are marked by red crosses. The graph shown is
a piecewise linear function that connects the data points.

Example 6.2

The pressure in a fully automatic espresso machine varies with the size of the coffee grinds. The pressure is
measured in bar and the grind size in units, where 1 signifies a coarse grind and 5 a fine one. The relation is
shown in Figure 1. The graph suggests that the relation between the grind size x and the pressure y might
be linear with the measured pressure (the yj) contaminated by measurement error. 2

The present lecture is concerned with the determination of relations of the form

y = f(x),
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where x is the independent variable, y is the dependent variable, and f is a function, which defines this
dependence. Let x1, x2, . . . , xm be known values of the dependent variable, and let yexact

1 , yexact
2 , . . . , yexact

m

be the associated, but unknown, values of the function f , i.e.,

yexact
j = f(xj), 1 ≤ j ≤ m.

We are interested in the common situation when only approximations, yj , of the values yexact
j are available.

Thus,
yj = yexact

j + ηj , 1 ≤ j ≤ m,

where the ηj are errors, which may stem from careless measurement, flaws in the measuring devise, or
inaccuracies introduced during transmission of the data from the measurement devise to the computer.

In many applications, the unavailable error-free data yexact
j , 1 ≤ j ≤ m, can be well approximated by

the values of a linear combination of a few simple functions, such as monomials, exponential functions, or
trigonometric functions at the xj . For instance, Figure 1 suggests the relation between the xj and yexact

j to
be linear. In order to gain insight into the relation depicted by the figure, we seek to fit the linear polynomial

p(x) = c1 + c2x (1)

to the available data {xj , yj}5
j=1 of Example 6.2. Knowing the coefficients c1 and c2 sheds light on the

relation between the grind size and pressure. We refer to the linear polynomial as our model, because we use
it to model the relation between the grind size and pressure.

There are many ways to determine a linear polynomial that fits the data in Example 6.2 in some sense.
We will determine the polynomial that minimizes the least-squares error,

min
p linear

m
∑

j=1

(p(xj) − yj)
2. (2)

Minimizing the least-squares error can be justified statistically when the data errors ηj are independent
and normally distributed with zero mean. These conditions often are met, at least roughly, in applications.
Moreover, there are fairly fast numerical methods available for the solution of least-squares minimization
problems. We will discuss several of these methods in this course.

Substituting the expression (1) into (2) transforms the least-squares minimization problem into the form

min
c1,c2
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




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∥

∥
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2

. (3)

Thus, we seek to determine the linear combination of the columns of the matrix that best approximates the
data-vector in the least-squares sense. We note that the square in (3) can be removed without changing the
solution of the least-squares problem.

Least-squares minimization problems arise in many applications and do not have to be related to the
approximation of a function by monomials or other functions. Let the vector y = [y1, y2, . . . , ym]T ∈ R

m

contain available, possibly error-contaminated, data, and assume that we would like to fit n < m linearly
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independent vectors a1,a2, . . . ,an ∈ R
m to y. We may formulate this task as a least-squares problem as

follows. Introduce the matrix
A = [a1,a2, . . . ,an] ∈ R

m×n (4)

and solve the least-squares minimization problem

min
c∈Rn

‖Ac − y‖, c = [c1, c2, . . . , cn]T . (5)

Throughout this section, we will assume that the columns of A are linearly independent. Then null(A) = {0}
and the least-squares problem has a unique solution. The following sections describe numerical methods for
the solution of least-squares problems.

6.2 Solution of Least-Squares Problems by QR Factorization

When the matrix A in (5) is upper triangular with zero padding, the least-squares problem can be solved by
back substitution. This is illustrated in the following example.

Example 6.3

Let

R̂ =

[

R
O

]

∈ R
m×n, m > n, (6)

where R ∈ R
n×n is a nonsingular upper triangular matrix and O ∈ R

(m−n)×n is a matrix with all entries
zero. Let y ∈ R

m. The solution of the least-squares problem

min
c∈Rn

‖R̂c − y‖ (7)

is given by c = R−1y1:n and can be computed by back substitution. Here y1:n denotes the vector made up
of the first n entries of y. Thus,

y =

[

y1:n

y(n+1):m

]

.

The vector y(n+1):m does not affect the solution c of the least-squares problem. Nevertheless, the norm of
the vector y(n+1):m is of interest. This will be commented on in Example 6.4. 2

We will describe how to factor a general m × n matrix A, with m ≥ n, into an orthogonal matrix
Q̂ ∈ R

m×m and a matrix of the form (6), i.e.,

A = Q̂R̂. (8)

Since the columns of A are linearly independent, so are the columns of R̂. In particular, the square submatrix
R is nonsingular.

The factorization (8) differs from the QR factorization (4) of Lecture 5 in that the matrix Q̂ above is
square also when A is not. Both the factorizations (4) of Lecture 5 and (8) above are referred to as QR

factorizations of A. They both can be used to solve least-square problems of the form (5). This is discussed
below. The factorization (8) above also is essential in the QR algorithm for computing eigenvalues and
eigenvectors of a matrix. The QR algorithm will be discussed in a later lecture. Here we only note that it
requires QR factorization (8) of a sequence of square matrices.
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Before discussing the computation of the QR factorization (8), we comment on its usefulness for the
solution of least-squares problems. Substitute the QR factorization (8) into the least-squares problem (5) to
obtain

min
c∈Rn

‖Q̂R̂c − y‖.

Since the norm of the vector Q̂R̂c−y does not change by multiplication by an orthogonal matrix, see (5) of
Lecture 5, it follows that

‖QR̂c − y‖ = ‖Q̂T (Q̂R̂c − y)‖ = ‖R̂c − Q̂T y‖
and, therefore,

min
c∈Rn

‖Ac − y‖ = min
c∈Rn

‖Q̂R̂c − y‖ = min
c∈Rn

‖R̂c − Q̂T y‖. (9)

Thus, we compute the solution of the minimization problem on the left-hand side by solving the minimization
problem on the right-hand side. The latter is of the form (7) and can be solved by back substitution.

Example 6.4

The matrix R̂ in (9) is of the form (6). Similarly as in Example 6.3, we let R denote the leading n × n
submatrix of R̂. Define the vector ŷ = Q̂T y in (9). The solution of (9) is given by c = R−1y1:n; cf. Example
6.3. Here we comment on the role of the trailing entries of the vector y.

For definiteness, let A be the m×2 matrix in the least-squares problem (3) and consider (9). Then n = 2
and the solution c ∈ R

2 determines the linear combination of the columns of A that best approximates the
data y ∈ R

m. The entries in ŷ3:m is the part of the data that cannot be approximated by the linear model
(2). If the norm ‖ŷ3:m‖ is small, then the model can represent the data well. There may be two reasons for
‖ŷ3:m‖ to be large: there are large errors in the data y but the chosen model is appropriate, or the model
is poorly suited to approximate the data. In the latter case, another model should possibly be used. For
instance, one might consider fitting a quadratic polynomial instead of a linear one. We refer to the norm
‖y(n+1):m‖ as the discrepancy. 2

The next section describes how to compute the factorization (8) with the aid of Householder matrices
and illustrates the application of this factorization to the solution of least-squares problems. A later section
discusses how the QR factorization (5) of Lecture 5 can be used to solve least-squares problem. A difficulty
that has to be addressed is that the matrix Q in the latter factorization is not square and, therefore, not an
orthogonal matrix.

6.3 QR Factorization by Householder Matrices

We describe the computation of the QR factorization (8) of A ∈ R
m×n, m ≥ n, with the aid of Householder

matrices,

H = I − ρuuT ∈ R
m×m, u 6= 0, ρ =

2

uT u
, (10)

introduced in Lecture 5. For notational simplicity, we let n = 3 in our discussion. Let aj denote the jth
columns of the matrix A, i.e.,

A = [a1,a2,a3] ∈ R
m×3.

Let H(1) = H be the Householder matrix that maps the column a1 onto σ(1)e1, where σ(1) is a scalar and,
as usual, e1 denotes the first axis vector. Then

H(1)A = [H(1)a1,H
(1)a2,H

(1)a3] = [σ(1)e1,H
(1)a2,H

(1)a3].
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The first column of the above matrix is the first column of the upper triangular matrix R̂ in the QR
factorization (8). We turn to the computation of the second column of this matrix.

Let the matrix A(2) = [a
(2)
1 ,a

(2)
2 ] ∈ R

(m−1)×2 be made up of the entries in rows 2 through m and columns
2 and 3 of H(1)A. Thus, we obtain A(2) from H(1)A by removing in the first row and the first column. Let

H(2) ∈ R
(m−1)×(m−1) denote the Householder matrix that maps the vector a

(2)
1 onto a multiple of e1, i.e.,

H(2)a
(2)
1 = σ(2)e1,

where σ(2) is a suitable scalar. Multiplying A(2) by H(2) from the left-hand side yields

H(2)A(2) = [H(2)a
(2)
1 ,H(2)a

(2)
2 ] = [σ(2)e1,H

(2)a
(2)
2 ].

Prepend a new first row and a new first column to H(2) to obtain the matrix

Ĥ(2) =

[

1 0T

0 H(2)

]

∈ R
m×m (11)

of the same size as H(1). Here 0 ∈ R
(m−1) denotes a (column) vector with all entries zero. It is easy to verify

that Ĥ(2) is orthogonal; see Exercise 6.2.
Multiplication of H(1)A by Ĥ(2) leaves the first row and the first column of H(1)A unchanged. (Verify

this!) Therefore,

Ĥ(2)H(1)A =























σ(1) ∗ ∗
0 σ(2) ∗

0 ∗

...
...

...

0 0 ∗























∈ R
m×3. (12)

The entries 2 through m of the last columns make up the vector H(2)a
(2)
2 . Entries marked by ∗ may be

nonvanishing.
One more Householder transformation has to be applied in order to bring the matrix (12) into upper

triangular form. Let the vector a
(3)
1 ∈ R

(m−2) be made up of the entries 3 through m of the last column of

the matrix (12), and let H(3) ∈ R
(m−2)×(m−2) denote the Householder matrix that maps a

(3)
1 onto a multiple

of e1, i.e.,

H(3)a
(3)
1 = σ(3)e1.

Prepend 2 new first rows and 2 new first columns to H(3) to obtain the matrix

Ĥ(3) =















1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... H(3)

0 0















∈ R
m×m (13)

of the same size as H(1). We may think of Ĥ(3) as being an m×m identity matrix, with the trailing principal
(m − 2) × (m − 2) submatrix replaced by H(3). The matrix Ĥ(3) is orthogonal.
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Analogously to (12), we obtain

R̂ = Ĥ(3)Ĥ(2)H(1)A =























σ(1) ∗ ∗
0 σ(2) ∗

0 σ(3)

0
...

...
...

0 0 0























∈ R
m×3. (14)

Multiplying (14) from the left-hand side by Ĥ(3), Ĥ(2), and H(1), in order, and using that

Ĥ(j)Ĥ(j) = (Ĥ(j))T Ĥ(j) = I, j = 2, 3,

as well as a similar formula for H(1), we obtain

A = H(1)Ĥ(2)Ĥ(3)R̂. (15)

Since the product of orthogonal matrices is orthogonal, see Exercise 5.6 of Lecture 5, the matrix Q̂ =
H(1)Ĥ(2)Ĥ(3) is orthogonal and (15) is a QR factorization of the form (8).

In order to solve the least-squares minimization problem on the right-hand side of (9), we also have to
compute Q̂T y. Note that

Q̂T y = Ĥ(3)Ĥ(2)H(1)y,

i.e., we can apply the matrices H(1), Ĥ(2), and Ĥ(3) to y in the order they are generated to obtain the vector
Q̂T y. In particular, the entries of the matrix Q̂ do not have to be computed explicitly.

An algorithm is said to be backward stable if it in the presence of round-off errors introduced during
the computations determines the exact solution to a nearby problem. QR factorization with the aid of
Householder matrices is backward stable. Let fl(Q̂) and fl(R̂) denote the computed factors in finite precision
arithmetic, where we represent fl(Q̂) as a product of unmultiplied Householder-type matrices. Each House-
holder matrix is represented by one vector. Thus, neither fl(Q̂) nor the Householder matrices are explicitly
formed. Then one can show that

‖fl(Q̂)fl(R̂) − A‖
‖A‖ = O(eps), (16)

where O(t) denotes a quantity bounded by c|t| for some constant c ≥ 0 independent of t, as t approaches zero.
Note that fl(Q̂) is numerically orthogonal, since perturbations in the vectors that represent the Householder
matrices do not change the orthogonality property. Moreover, fl(R̂) is upper triangular by construction.

Example 6.5

Table 1 shows measured function values y at four times t. Figure 2 displays the data of the table. The figure
suggests that, in the absence of measurement errors, the data points might lie on a parabola, i.e., y may be
a quadratic function of t. We therefore would like to determine the quadratic polynomial

p(t) = c1 + c2t + c3t
2 (17)
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t y
1 1.0
2 1.5
3 3.0
4 6.0

Table 1: Example 6.5: The right-hand side column displays measured values at several times t.
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Figure 2: Example 6.5: Graph for Table 2. The data points {xj , yj}, 1 ≤ j ≤ 4, are marked by red crosses.
The graph shown is a piecewise linear function, which connects the data points. The graph indicates that
the relation plotted may be quadratic.

that best approximates the data of Table 1 in the least-squares sense. Tabulation of the polynomial at the
nodes tj = j, 1 ≤ j ≤ 4, gives the matrix A ∈ R

4×3. We denote the vector with the available function values
by y. Thus, we have

A =









1 1 1
1 2 4
1 3 9
1 4 16









, y =









1.0
1.5
3.0
6.0









.

We would like to solve the minimization problem

min
c∈R3

‖Ac − y‖, c = [c1, c2, c3]
T . (18)

This least-squares problem is solved by application of a sequence of judiciously chosen Householder matrices,
which we apply from the left-hand side to both A and y. The Householder matrices are designed to transform
A into upper triangular form. The first Householder matrix H(1) is chosen to map the first column of A
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onto a multiple of e1, i.e., we would like

H(1)









1
1
1
1









= σ(1)e1

for some scalar σ(1). This Householder matrix is the same one as in Example 5.6 of Lecture 5. Thus,
σ(1) = −2 and we obtain, after rounding to 2 decimals,

H(1)A =









−2 −5 −15
0 0 − 1.33
0 1 3.67
0 2 10.67









, H(1)y =









−5.75
−0.75

0.75
3.75









.

Our next task is to determine a Householder matrix

H(2) = I − ρ(2)u(2)(u(2))T ∈ R
3×3 (19)

that maps the vector consisting of the entries 2 through 4 of column 2 of the matrix H(1)A onto a multiple
of e1, i.e., we would like H(2) to be such that

H(2)





0
1
2



 = σ(2)e1

for some scalar σ(2). Then |σ(2)| = ‖[0, 1, 2]T ‖ =
√

5 ≈ 2.24. Since the first component of the vector to be
mapped vanishes, the sign of σ(2) can be chosen arbitrarily; we let σ(2) =

√
5 and obtain

u(2) = [−
√

5, 1, 2]T .

This yields ρ(2) = 2/‖u(2)‖2 = 1/5 and it follows from (19) that

H(2) =





0 0.45 0.89
0.45 0.80 −0.40
0.89 −0.40 0.20



 .

We embed this matrix in the 4 × 4 orthogonal matrix

Ĥ(2) =

[

1 0T

0 H(2)

]

=









1 0 0 0
0 0 0.45 0.89
0 0.45 0.80 −0.40
0 0.89 −0.40 0.20









,

where 0 denotes the zero vector in R
3. Then

Ĥ(2)H(1)A =









−2 −5.00 −15.00
0 2.24 11.18
0 0 −1.93
0 0 −0.53









, Ĥ(2)H(1)y = Ĥ(2)









−5.75
−0.75

0.75
3.75









=









−5.75
3.69

−1.24
−0.22









.
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Thus, we have determined the first 2 columns of the upper triangular matrix R̂ in (8). We remark that it is
not necessary to compute the entries of Ĥ(2) in order to evaluate the above matrix and vector.

The next Householder matrix

H(3) = I − ρ(3)u(3)(u(3))T ∈ R
2×2

is designed to zero the last entry in the last column of the matrix Ĥ(2)H(1)A; it is determined by the last
two entries of this column. Thus, we would like H(3) to satisfy

H(3)

[

−1.93
−0.53

]

= σ(3)e1

for some scalar σ(3). We obtain |σ(3)| = ‖[−1.93,−0.53]T ‖ = 2 and choose σ(3) = 2 in order to avoid loss of
accuracy due to cancellation of significant digits. Thus,

u(3) =

[

−1.93 − σ(3)

−0.53

]

=

[

−3.93
−0.53

]

.

It follows that ρ(3) = 0.13 and

H(3) =

[

−0.96 −0.26
−0.26 0.96

]

.

We embed H(3) in the larger orthogonal matrix

Ĥ(3) =









1 0 0 0
0 1 0 0
0 0 −0.96 −0.26
0 0 −0.26 0.96









and finally obtain

R̂ = Ĥ(3)Ĥ(2)H(1)A =









−2 −5.00 −15.00
0 2.24 11.18
0 0 2
0 0 0









, Ĥ(3)Ĥ(2)H(1)y = Ĥ(3)









−5.75
3.69

−1.24
−0.22









=









−5.75
3.69
1.25
0.11









.

Let R be the leading 3× 3 submatrix of R̂ and let the vector d consist of the first 3 entries of the vector
above, i.e.,

R =





−2 −5.00 −15.00
0 2.24 11.18
0 0 2



 , d =





−5.75
3.69
1.25



 .

The solution c = [c1, c2, c3]
T = [1.875,−1.475, 0.625]T of the linear system of equations Rc = d solves the

least-squares problem (18).
Figure 3 shows the graph of Figure 2 and the graph of the quadratic polynomial (17) determined by the

computed coefficients cj . The polynomial can be seen to approximate the data well, which indicates that
modeling by a quadratic polynomial may be appropriate.

The last entry, 0.11, of the vector Ĥ(3)Ĥ(2)H(1)y is the discrepancy. It provides a numerical value of the
goodness of fit, because

min
c∈R3

‖Ac − y‖ = min
c∈R3

‖R̂c − Ĥ(3)Ĥ(2)H(1)y‖ = 0.11.

Since this value is small, the computed polynomial (17) provides a good fit of the data. 2
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Figure 3: Example 6.5: Graph of Figure 2 and of the computed quadratic polynomial (17) (in magenta).
The polynomial is seen to fit the data well.

6.4 QR Factorization by the Modified Gram-Schmidt Procedure

Above we used Householder matrices to compute the QR factorization (8) and the applied this factorization
to the solution of least-squares problems. Here we will show that how the QR factorization (4) of Lecture 5,
determined by modified Gram-Schmidt procedure, can be applied to the solution of least-squares problems
(5). In exact arithmetic, also a QR factorization determined by the standard Gram-Schmidt procedure can
be used; however, this is not advisable when the factorization is determined using floating point arithmetic.

Split the matrix Q̂ in the QR factorization (8) into two parts:

Q̂ = [Q, Q̆], Q ∈ R
m×n, Q̆ ∈ R

m×(m−n). (20)

Then, using (6), we obtain

A = Q̂R̂ = [Q, Q̆]

[

R
O

]

= QR.

The right-hand side is a factorization of the form (4) of Lecture 5. This shows that orthogonalization by the
modified Gram-Schmidt procedure gives the first n columns, up to factors ±1, of the matrix Q̂ determined
by Householder matrices; see Exercise 5.2 of Lecture 5. Substituting (6) and (20) into (9) yields

min
c∈Rn

‖Ac − y‖2 = min
c∈Rn

‖R̂c − Q̂T y‖2 = min
c∈Rn

{‖Rc − QT y‖2 + ‖Q̆T y‖2}.

The last term is independent of c. Therefore, the solution of the above least-squares problem can be
determined by solving

Rc = QT y

by back substitution. Note that the matrix R above is square.
In summary, we may solve least-squares problems (5) by using the QR factorization of A determined by

orthogonalization of the the columns of the matrix by the modified Gram-Schmidt procedure. This approach
does not give the discrepancy ‖Q̆T y‖ during the computations. The discrepancy provides insight into how
well the model fits the data.
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6.5 The Normal Equations

A natural, but inherently flawed approach, to solving least-squares problems is to form and solve the so-
called normal equations. Since this approach is quite popular, we provide an outline and comment on its
deficiency. Substituting the expression (1) into (2) yields

min
c1,c2

m
∑

j=1

(c1 + c2xj − yj)
2
. (21)

Define the function

F (c1, c2) =

m
∑

j=1

(c1 + c2xj − yj)
2
. (22)

The minimization problem (21) can be expressed as

min
c1,c2

F (c1, c2).

Keeping c2 fixed, we see that c1 → F (c1, c2) is a quadratic polynomial with positive leading coefficient. (The
leading coefficient is m.) The quadratic polynomial therefore has a unique minimum, which is achieved for
the value of c1 for which the derivative of c1 → F (c1, c2) vanishes. This value of c1 depends on our choice of
c2.

The derivative of c1 → F (c1, c2) is commonly referred as the partial derivative of F with respect to c1

and denoted by ∂F/∂c1. Thus, for any fixed coefficient c2, we require c1 to satisfy

∂F (c1, c2)

∂c1
= 0. (23)

Similarly, keeping c1 fixed, the function c2 → F (c1, c2) is a quadratic polynomial, which we seek to
minimize. Analogously to the discussion above, we are lead to determining a zero of the partial derivative
of F with respect to c2, i.e., we require c2 to satisfy

∂F (c1, c2)

∂c2
= 0. (24)

Using the definition (22) of the function F , we obtain from (23) and (24) the equations

∂F (c1, c2)

∂c1
= 2

m
∑

j=1

(c1 + c2xj − yj) = 0,

∂F (c1, c2)

∂c2
= 2

m
∑

j=1

(c1 + c2xj − yj) xj = 0,

which can be expressed as a linear system of equations





2
∑m

j=1 1 2
∑m

j=1 xj

2
∑m

j=1 xj 2
∑m

j=1 x2
j





[

c1

c2

]

=





2
∑m

j=1 yj

2
∑m

j=1 yjxj



 . (25)
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This system is known as the normal equations associated with the least-squares minimization problem (2).
Let A be the matrix in (3) and let the vector y have the entries yj , i.e.,

A =















1 x1

1 x2

...
...

1 xm−1

1 xm















, y =















y1

y2

...
ym−1

ym















.

Then the least-squares problem (3) can be expressed in the form

min
c∈R2

‖Ac − y‖2
2, c = [c1, c2]

T ,

and the normal equations (25) can be written as

AT Ac = AT y. (26)

The normal equations (26) can be solved by a variant of Gaussian elimination. However, generally the
solution of the normal equations is more sensitive to errors in the data and to round-off errors introduced
during the computations than the solution of the least-squares problem (5) determined by QR factorization
of the matrix using Householder matrices.

Example 6.6

Consider the matrix

A =





1 1
δ 0
0 δ



 , δ = 1 · 10−8

and let y = [1, 2, 3]T . Then the solution of the least squares problem

min
c∈R2

‖Ac − y‖

can be computed in MATLAB, while the solution of the associated normal equations (26) cannot. The latter
depends on that floating point representation of AT A, given by

fl(AT A) =

[

1 1
1 1

]

,

is a singular matrix. 2

The solution of the normal equations generally should be avoided also for other matrices than the one
in the above example. This depends on that the condition number of the matrix AT A is the square of the
condition number of A. The condition number measures the sensitivity of a problem to perturbations. It
is defined in Lecture 10. A large condition number indicates that the problem solved may be sensitive to
errors in the data as well as to round-off errors introduced during the computations. For many least-squares
problems, the condition number of AT A is much larger than the condition number of A. The solution of
these problems should not be computed by solving the normal equations.

12



Even though the normal equations should not be used for computation, they do provide some geometrical
insight. Express (26) in the form

AT (y − Ac) = 0.

The above equation shows that the residual vector r = y − Ac associated with the least-squares solution is
orthogonal to the columns of A.

Exercise 6.1

Discuss the nonuniquness of the factorization (8). Hint: Consider the first n and last m − n columns of Q
separately. 2

Exercise 6.2

Show that the matrix (11) is orthogonal. 2

1 11.0
2 12.5
3 14.5
4 16.0
5 18.0

Table 2: Exercise 6.3: Grind size (left-hand side column) versus pressure (right-hand side column).

Exercise 6.3

Table 2 shows the data for Figure 1. Use this data to determine the linear polynomial (1). Use Householder
matrices to compute the solution (similarly as in Example 6.5). Show the Householder matrices used and the
matrices obtained after applying 1 and 2 Householder matrices to the matrix in the least-squares problem
(3). Also show the data-vectors obtained by orthogonal transformation. Compute the discrepancy and plot
the computed polynomial together with the data. Does the polynomial fit the data well? 2

Exercise 6.4

The MATLAB command c = A\y solves the least-squares minimization problem (5). The computations
are carried out similarly as in Example 6.5, i.e., they are based on Householder matrices. Determine the
polynomials of degrees 0, 1, 2, and 3 that best fit the data of Exercise 6.3 in the least-squares sense. What
are the discrepancies for the different degrees? 2

Exercise 6.5

The measured values of a harmonic oscillator y(t) = a sin(φ + φ0) are given in Table 3. We would like
to determine the amplitude a and phase φ0. (a) Why can least-squares minimization not be applied in a
straightforward way to determine these quantities? (b) Express y(t) in the form

y(t) = c1 cos(φ) + c2 sin(φ)
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φ y
4 3.41

34 7.70
64 9.84
94 9.40

Table 3: Exercise 6.5: The right-hand side column displays the angles in degrees and the left hand-side
column the associated function values.

and determine the coefficients c1 and c2 by the least-squares minimization. Then seek to determine φ0 from
c1 and c2 by using a trigonometric identity. Plot the computed function y(t) and data of Table 3. 2

Exercise 6.6

Consider the computation of the QR factorization of A ∈ R
m×n. The number of arithmetic floating point

operations (flops) required for computing the QR factorization is a function of the form f(m,n). This
function can be expanded into products of powers of m and n. What are the powers of the leading terms?
That is, determine the powers j, k ≥ 0 of the leading term mjnk. 2

Exercise 6.7

Let v1,v2,v3 be linearly independent vectors in R
m, with m ≥ 3. Determine an orthonormal basis of

span{v1,v2,v3} with the aid of Householder matrices. 2

Exercise 6.8

Solve the problem of Example 6.5 by using the modified Gram-Schmidt procedure to compute the QR
factorization (4) of Lecture 5, and then apply this factorization. 2
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