
7 The Singular Value Decomposition

Lecture 6 discussed the least-squares approximation problem

min
x∈Rn

‖Ax − b‖, (1)

where A ∈ R
m×n is a matrix with more rows than columns (m > n) and b ∈ R

m, and its
solution by QR factorization of A. This lecture describes another factorization, the singular value

decomposition, or SVD for short, which also can be used to solve least-squares problems. The SVD
of a matrix is more complicated and expensive to compute than the QR factorization; however,
the SVD provides more insight into the problem being solved and can be applied also in situations
when QR factorization cannot, such as when the columns of A are linearly dependent. We first
discuss properties and applications of the SVD. At the end of this lecture, we describe some of the
computations required to determine the SVD of a matrix.

The SVD of A ∈ R
m×n, where we assume that m ≥ n, is a factorization of the form

A = UΣV T , (2)

where U = [u1,u2, . . . ,um] ∈ R
m×m and V = [v1,v2, . . . ,vn] ∈ R

n×n are orthogonal matrices and

Σ =

















σ1 O
σ2

. . .

σn

O

















∈ R
m×n, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

is a (possibly rectangular) diagonal matrix with the nonnegative diagonal entries enumerated in
decreasing order. The last m− n rows only contain zero entries. The σj are referred to as singular

values, and the uj and vj as left and right singular vectors, respectively. The SVD also can be
defined for matrices with more columns than rows; then the diagonal matrix Σ has n − m trailing
zero columns. This lecture is concerned with the situation when m ≥ n.

Since the last m− n rows of Σ only contain zeros, the decomposition (2) also can be written in
the form

A =
n

∑

j=1

σjujv
T
j . (3)

This representation only uses the first n columns of U .
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7.1 The range and null space of a matrix via its SVD

Some singular values of A may vanish. Assume that A has ℓ positive singular values, i.e.,

σ1 ≥ . . . ≥ σℓ > σℓ+1 = . . . = σn = 0. (4)

The range of the matrix A easily can be determined from its singular value decomposition. We
have

range(A) = {Ax : x ∈ R
n} = {UΣV Tx : x ∈ R

n} = {UΣy : y ∈ R
n}, (5)

where
y = [y1, y2, . . . , yn]T = V Tx.

Let cj = σjyj for j = 1, 2, . . . , ℓ. Then the right-hand side of (5) can be written as

range(A) = {UΣy : y ∈ R
n} =







ℓ
∑

j=1

ujcj : cj ∈ R







= span{u1,u2, . . . ,uℓ}. (6)

Hence, range(A) is spanned by the columns of U that are associated with positive singular values
in the representation (3). These columns form an orthonormal basis for the range.

Recall from Lecture 1 that the dimension of range(A) is referred to as the rank of A. It is
denoted by rank(A). It follows from (6) that rank(A) = ℓ, i.e., the rank is the number of positive
singular values.

Assume that the columns of the matrix A are linearly dependent. Then A has a nontrivial null
space null(A); see Lecture 1 for the definition of null(A). The null space can be expressed in terms
of the last columns of the matrix V . We have

null(A) = {x ∈ R
n : Ax = 0} = {x ∈ R

n : UΣV Tx = 0} = {x ∈ R
n : ΣV Tx = 0},

where the last expression is obtained by multiplying the equation UΣV Tx = 0 by UT from the left.
Any vector x ∈ R

n can be written as a linear combination of the columns vj of the matrix V ,
i.e., x =

∑n
j=1 vjcj for certain coefficients cj . Substituting this expression into

ΣV Tx = 0

and using the orthogonality of the columns vj gives the equation

[σ1c1, σ2c2, . . . , σℓcℓ, σℓ+1cℓ+1, . . . , σncn]T = 0.

Since σj > 0 for 1 ≤ j ≤ ℓ, it follows that cj = 0 for these index values. Moreover, σj = 0 for
ℓ < j ≤ n implies that the coefficients cj for these j-values are arbitrary. We conclude that

null(A) =







x =
n

∑

j=ℓ+1

vjcj , cj ∈ R







= span{vℓ+1,vℓ+2, . . . ,vn}. (7)
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Thus, null(A) is spanned by the columns of V associated with vanishing singular values. If all
singular values are positive, then null(A) = {0}.

The singular value decomposition of AT is given by

AT = (UΣV T )T = V ΣT UT

and analogously to equations (6) and (7), we obtain

range(AT ) = {V ΣT UTx : x ∈ R
m} = {V ΣTy : y ∈ R

m}

(8)

=







ℓ
∑

j=1

vjcj : cj ∈ R







= span{v1,v2, . . . ,vℓ}

and

null(AT ) = {x ∈ R
m : ATx = 0} = {x ∈ R

m : ΣT UTx = 0}

(9)

=







m
∑

j=ℓ+1

ujcj , cj ∈ R







= span{uℓ+1,uℓ+2, . . . ,um}.

Comparing equations (6) and (9) shows that the sets range(A) and null(AT ) are orthogonal,
i.e., any vector in range(A) is orthogonal to any vector in null(AT ). Moreover, the union of these
spaces is spanned by all the columns of U , i.e., the union is R

m. This result is sometimes written
as

range(A) ⊕ null(AT ) = R
m. (10)

Similarly, a comparison of (7) and (8) shows that the sets null(A) and range(AT ) are orthogonal,
and that the union of these sets is R

n. This property is sometimes expressed as

null(A) ⊕ range(AT ) = R
n. (11)

The properties (10) and (11) are shown in different, more complicated, ways in standard Linear
Algebra courses. Our reason for discussing these results here is to illustrate that they follow quite
easily from the SVD of A.

Exercise 7.1

What is the singular value decomposition of the matrix

A =

[

2 0
0 4

]

?

Determine the solution with a paper and pencil! 2
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Exercise 7.2

What is the singular value decomposition of the matrix

A =

[

2 0
0 −4

]

?

Determine the solution with a paper and pencil! 2

Exercise 7.3

Compute the SVD of the matrix

A =









1 2 3
2 3 4
4 5 6
1 1 1









.

What are the range and null space of A? You may use the MATLAB/Octave commad svd to
determine the SVD. 2

7.2 The SVD applied to matrix norm computations

Recall from Lecture 1 the definition of the matrix norm induced by the Euclidean vector norm,

‖A‖ = max
‖x‖=1

‖Ax‖. (12)

Substituting the SVD of A into the right-hand side of (12) yields

‖A‖ = max
‖x‖=1

‖UΣV Tx‖.

Using that the Euclidean vector norm is invariant under multiplication by an orthogonal matrix
allows us to discard the matrix U above. Moreover, letting y = V Tx and observing that ‖y‖ = ‖x‖
(since V T is orthogonal), it follows that

‖A‖ = max
‖x‖=1

‖ΣV Tx‖ = max
‖y‖=1

‖Σy‖ = σ1.

The last equality is obtained by explicitly writing up the norm of the vector Σy and determining
when the norm is maximal. We have shown that

‖A‖ = σ1. (13)

In words, the norm of a matrix is the largest singular value of the matrix.
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Let the matrix A ∈ R
n×n be invertible. We will use the above result to determine the norm of

A−1. Consider the SVD (2) of A. Since A is square, so are the matrices U , Σ, and V . Moreover,
since A has is invertable, its smallest singular value, σn, is positive. This follows for instance from
the observation that if σn = 0, then the right singular vector vn is in null(A). However, we know
that null(A) = {0}. Thus, the matrix Σ is invertible and we obtain

A−1 = (UΣV T )−1 = V Σ−1UT . (14)

The right-hand side is the SVD of A−1 up to a reordering of the columns of U and V ; see Exercise
7.4. Reordering does not affect the size of the the singular values, which are the diagonal entries
of Σ−1. Thus, A−1 has the singular values

σ−1
n ≥ σ−1

n−1 ≥ . . . ≥ σ−1
1 .

The largest singular value of A−1 is σ−1
n . Therefore,

‖A−1‖ = σ−1
n . (15)

In words, the norm of the inverse of a matrix is the reciprocal of the smallest singular value of the

matrix.

Exercise 7.4

Express the SVD of A−1 in terms of the matrices U , Σ, and V in the SVD of A; cf. (14). Note
that the columns of U and V have to be reordered suitably. 2

7.3 Approximations of A determined by its SVD

Our starting point is the representation (3) of A. Assume that the singular values satisfy (4). Then
each term σjujv

T
j with 1 ≤ j ≤ ℓ in (3) is a rank-one matrix. Introduce, for 1 ≤ k ≤ ℓ, the matrices

Ak =
k

∑

j=1

σjujv
T
j . (16)

Thus, rank(Ak) = k. We also will require the diagonal matrices Σk obtained by setting the singular
values σk+1, σk+2, . . . , σℓ to zero in the matrix Σ.

Let 1 ≤ k ≤ ℓ. The difference A−Ak is small if the singular values σk+1, σk+2, . . . , σℓ are small.
We have

A − Ak =
ℓ

∑

j=k+1

σjujv
T
j = UΣV T − UΣkV

T
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and, therefore,
‖A − Ak‖ = ‖UΣV T − UΣkV

T ‖ = ‖Σ − Σk‖ = σk+1. (17)

In the special case, when k = n, we define σn+1 = 0.
The equality (17) shows that if k is chosen so that σk+1 is small, then Ak is an accurate

approximation of A. In some applications with large matrices A, we may choose k to be much
smaller than ℓ and still obtain an acceptable approximation of A. Instead of storing the matrix A,
it therefore suffices to store the first k left and right singular vectors and singular values in the sum
(16). This illustrates how the SVD can be applied to data compression.

We have the following remarkable result:

‖A − Ak‖ = min
B∈Rm×n

rank(B)≤k

‖A − B‖ = σk+1.

Thus, the matrix Ak is the best possible rank-k approximation of A. The proof is not very difficult,
but outside the scope of this course.

Figure 1: The surface represented by the function of Example 7.1.
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Figure 2: The 50 largest singular values of the 1401 × 1401 matrix A of Example 7.1.

Example 7.1

Let the matrix A = [aij ] ∈ R
1401×1401 represent a discretization of the surface

z =
√

1 − x2 − y2, −0.7 ≤ x, y ≤ 0.7.

Specifically, let

aij =
√

1 − x2
i − y2

j , xi = yi = −0.7 + ∆(i − 1), ∆ = 0.001, 1 ≤ i, j ≤ 1401.

Figure 1 shows a plot of the surface. The first 50 singular values of the matrix A are displayed
by Figure 2. These singular values are seen to decay to zero rapidly, which suggests that an
accurate approximation of the matrix can be determined by a sum of the form (16) with few
terms. For instance σ1 = 1.1 · 103, σ5 = 1.0 · 10−2, and σ6 = 1.1 · 10−3. It follows from (17) that
‖A−A5‖ = 1.1 ·10−3. Therefore the surface represented by A5 is indistinguishable from the surface
represented by A with the resolution of Figure 1. 2

Exercise 7.5

Each term σjujv
T
j in the right-hand side of (16) is a matrix of rank one. Determine its norm. 2

Exercise 7.6

Show equation (17). 2
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Exercise 7.7

What is the best rank-2 approximation A2 of the matrix in Exercise 7.3? What is ‖A − A2‖? 2

Exercise 7.8

Reproduce the graphs of Figure 1 and 2. Use the MATLAB commands meshgrid and surface for
the former and semilogy for the latter. The MATLAB command hold also may be useful. 2

Exercise 7.9

Investigate whether a 501× 501 matrix that represents the surface exp(−x2 − 2y2), −1 ≤ x, y ≤ 1,
can be represented by a matrix of the form (16) of low rank k. Use the MATLAB commands
meshgrid and surface. Verify experimentally that (17) holds. 2

7.4 Computation with the SVD

We turn to the application of the SVD to the solution of the least-squares problem (1). Substitute
the SVD (2) into (1), and introduce the vectors

y = [y1, y2, . . . , yn]T = V Tx, b̂ = [b̂1, b̂2, . . . , b̂m]T = UTb.

We obtain, by using the orthogonality of U , that

min
x∈Rn

‖Ax − b‖ = min
x∈Rn

‖UΣV Tx − b‖ = min
x∈Rn

‖ΣV Tx − UTb‖ = min
y∈Rn

‖Σy − b̂‖. (18)

The least-squares problem on the right-hand side of (18) involves a diagonal matrix and can be
solved explicitly. Assume that the singular values satisfy (4). Then we have

min
y∈Rn

‖Σy − b̂‖2 = min
y∈Rn

n
∑

j=1

(σjyj − b̂j)
2 = min

y∈Rn







ℓ
∑

j=1

(σjyj − b̂j)
2 +

n
∑

j=ℓ+1

b̂2
j







, (19)

where the last equality follows from the fact that σℓ+1 = σℓ+2 = . . . = σn = 0. If null(A) = {0},
then σn > 0 and ℓ = n. The last sum vanishes in this situation.

The least-squares problem (19) has the solution

yj =
b̂j

σj

, 1 ≤ j ≤ ℓ, (20)

yj arbitrary, ℓ < j ≤ n. (21)

In many applications one sets the arbitrary components of the vector y = [y1, y2, . . . , yn]T to zero.
This gives the least-squares solution y of minimal norm. The associated solution x = V y of the
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least-squares problem also is of minimal norm, since the norm is invariant under multiplication
by the orthogonal matrix V . This solution of the least-squares problem (1) is referred to as the
minimal norm least-squares solution. It is unique.

We remark that when A is of rank less than n, the solution method of Lecture 6 typically
will not give the minimal norm least-squares solution. The upper triangular matrix in the QR
factorization of A will be singular; it will have at least one zero entry on the diagonal. This shows
that the least-squares problem does not have a unique solution; however, it is difficult to determine
the least-squares solution of minimal norm using the QR factorization of A.

When some positive singular values are “tiny,” we see from (20) that the computed solution
may have large components. Assume that the smallest positive singular value is much smaller than
the largest singular value. Then it may be meaningful to set the former to zero. The representation
(3) of A shows that setting a tiny singular value to zero induces a tiny change in A; a term, say,
σnunv

T
n of tiny norm σn is replaced by the zero matrix. This small modification of A will not

affect the minimum value (19) significantly. However, the modified problem may have a solution
of much smaller norm than the original problem and therefore be more meaningful in the context
of an application. The following section illustrates this for polynomial approximation.

Exercise 7.10

Let A be the matrix of Exercise 7.3 and let b = [1, 1, 1, 1]T . Determine the least-squares solution
of

min
x∈R3

‖Ax − b‖

by using the MATLAB command x = A\b. Is this the minimal norm least-squares solution? 2

7.5 An application to polynomial approximation

We consider the problem of approximating the function f(t) = exp(t) on the interval [0, 1] by a
polynomial of degree at most 10 by using 11 function values at equidistant points. The available
function values are contaminated by error, which, for instance, may stem from poor software for
evaluating the exponential function.

Denote the exact function values, which are assumed not to be available, by fj = exp(tj),
1 ≤ j ≤ 11, where the nodes are defined by tj = (j − 1)/10, 1 ≤ j ≤ 11. Thus, the nodes are
equidistant on the interval [0, 1]. Let

f̃j = fj + ηj , 1 ≤ j ≤ 11,

denote the available approximations of fj . Here ηj is the error in f̃j ; the ηj are normally distributed
random numbers with zero mean and their variance (scaling) corresponds to a relative error of 1%
in the following sense: Introduce the vectors

f = [f1, f2, . . . , f11]
T , n = [η1, η2, . . . , η11]

T .

9



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

1

1.5

2

2.5

3

Figure 3: The function f and the polynomial that interpolates f at 11 equidistant nodes (red
dashed graph), the polynomial that interpolates the error-contaminated approximations f (black
solid graph), the interpolation points (marked by ∗), and the polynomial obtained by computing
the SVD of the Vandermonde matrix and setting the singular values σj to zero for j ≥ 5 (blue
dash-dotted graph).

The variance (scaling) of n is such that ‖n‖/‖f‖ = 0.01. We refer to the vector n as “noise.” It
easily can be generated in MATLAB in the following way:

n = randn(11, 1); n = n/norm(n); n = n ∗ norm(f) ∗ 0.01;

We first compute a polynomial

p(t) = c1 + c2t + c3t
2 + . . . + c11t

10, (22)

which attains the exact function values fj at the nodes tj . This polynomial will be used for
comparison. Thus, p satisfies

p(tj) = f(tj), 1 ≤ j ≤ 11. (23)

The polynomial p is said to interpolate f at the nodes tj . The latter are also referred to as
interpolation points.

Substituting (22) into (23) yields a linear system of equations

Ac = f , (24)
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where

A =











1 t1 t21 . . . t101
1 t2 t22 . . . t102
...

...
...

...
1 t11 t211 . . . t1011











, c = [c1, c2, . . . , c11]
T . (25)

Matrices of the above form are known as Vandermonde matrices. They can be shown to be non-
singular when all nodes tj are distinct. For instance, 2 × 2 Vandermonde matrices satisfy

det

[

1 t1
1 t2

]

= t2 − t1 6= 0.

The nonsingularity of n×n Vandermonde matrices with distinct nodes can be shown by induction
and guarantees the existence of a unique interpolation polynomial. In particular, the linear system
of equations (24) has a unique solution.

We measure the approximation error using a discrete uniform norm that evaluates f − p at 101
equidistant nodes in [0, 1]:

‖f − p‖∞ = max
1≤j≤101

∣

∣

∣

∣

f

(

j − 1

100

)

− p

(

j − 1

100

)
∣

∣

∣

∣

.

This yields ‖f − p‖∞ = 1.8 · 10−13. Thus, when using exact function values, the polynomial
determined by solving the Vandermonde system (24) approximates f on the whole interval [0, 1]
very accurately. The dashed red graph of Figure 3 depicts this polynomial as well as the function
f ; the graphs are too close to distinguish.

We now determine the polynomial

p̃(t) = c̃1 + c̃2t + c̃3t
2 + . . . + c̃11t

10 (26)

that interpolates the contaminated function values f̃j , i.e.,

p̃(tj) = f̃j , 1 ≤ j ≤ 11. (27)

Substituting (26) into (27) gives the linear system of equations

Ac̃ = f̃ , (28)

where f̃ = [f̃1, f̃2, . . . , f̃11]
T and c̃ = [c̃1, c̃2, . . . , c̃11]

T , for the coefficients of c̃j of p̃. The black
continuous graph of Figure 3 displays p̃. The points {(tj , f̃j)}

11
j=1 are marked by ∗.

The graph shows the polynomial p̃ to be a poor approximation of f . Moreover, the error in p̃
is seen to be larger between the nodes tj than at the nodes. We have

‖f − p̃‖∞ = 1.6 · 10−1
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and
max

1≤j≤11
|fj − f̃j | = 3.7 · 10−2.

There are two fairly simple approaches to determining a better polynomial approximant from
the available data: i) fit a polynomial of lower degree using the least-squares method, or ii) compute
the SVD of the Vandermonde matrix and set a few of the smallest singular values to zero in order
to avoid division of by tiny numbers, cf. (20), and the possible resulting error propagation. We
will use the latter approach.

Consider the SVD of the Vandermonde matrix (25),

A = UΣV T

with the orthogonal matrices

U = [u1,u2, . . . ,u11] ∈ R
11×11, V = [v1,v2, . . . ,v11] ∈ R

11×11

and the diagonal matrix

Σ = diag[σ1, σ2, . . . , σ11], σ1 ≥ σ2 ≥ . . . ≥ σ11 > 0.

Using this decomposition, the solution of (28) can be written as

c̃ = A−1f̃ = V Σ−1UT f̃ =

11
∑

j=1

ˆ̃
f j

σj

vj , (29)

with
ˆ̃
f = [

ˆ̃
f1,

ˆ̃
f2, . . . ,

ˆ̃
f11]

T := UT f̃ .

Figure 4 displays in logarithmic scale the singular values of A. The singular values can be seen
to decrease faster than exponentially with increasing index j (exponential decrease would result in
a straight line with negative slope).

The presence of tiny singular values implies that we divide by tiny numbers in the sum in (29).
In order to gain further understanding of whether this causes error propagation, we also plot the

the numerators
ˆ̃
f j of this sum.

Figure 5 shows in logarithmic scale the magnitude of the components of the vectors f̂ = UT f

and
ˆ̃
f = UT f̃ . The magnitude of the components of the former vector is seen decrease to zero much

more rapidly with increasing index j. The difference in magnitude of the components of f̂ and
ˆ̃
f

depends on the error in the latter vector. The error in the components of
ˆ̃
f with large index is

divided by small singular values. This amplifies the influence of the errors in the function values
f̃j on the computed polynomial coefficients.
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Figure 4: Singular values σj of the Vandermonde matrix A versus j.
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Figure 5: Magnitude of the components
ˆ̃
f j of the vector

ˆ̃
f in the numerator in the sum in (29)

versus j (black ∗) and magnitude of the components of the error-free vector f̂j versus j (red circles).
The magnitude of the latter components is seen to decrease to zero faster.

A remedy for this problem is to ignore the last terms with tiny singular values in the sum (29).
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ℓ ‖f − p̃(ℓ)‖∞
11 0.162
10 0.136
9 0.035
8 0.026
7 0.025
6 0.022
5 0.020
4 0.019
3 0.020
2 0.134
1 0.985

Table 1: Approximation error for polynomials p̃(ℓ) determined by the entries of the vector c̃(ℓ) given
by (30).

We therefore determine the approximate solution

c̃(ℓ) =
ℓ

∑

j=1

ˆ̃
f j

σj

vj , (30)

to the linear system of equations (28) for some ℓ < n. Choosing the number of terms ℓ is equivalent
to replacing the Vandermonde matrix A by a nearby matrix of rank ℓ.

Let p̃(ℓ) denote the polynomial determined by the coefficients in the solution vector c(ℓ). Table
1 shows how well the p̃(ℓ) approximate f for different values of ℓ. The table shows the error to be
the smallest for ℓ = 4, i.e., when the Vandermonde matrix A is approximated by a matrix of rank
4. The blue dash-dotted graph of Figure 3 displays p̃(4). This graph is much closer to the graph of
f than the graph for the interpolating polynomial p̃.

These computations illustrates that the SVD may be used to determine accurate polynomial
approximants when interpolation does not. The determination of the value of ℓ in (30) that yields
the polynomial that best approximates f is often is not easy when f is not explicitly known. A

graph for the components of the vector
ˆ̃
f often is helpful for choosing an appropriate ℓ. We may,

for instance, choose ℓ small enough to exclude terms associated with coefficients
ˆ̃
f j that do not

decrease in magnitude. This approach applied to the present problem gives the value ℓ = 6; see
Figure 5. This value is not optimal; however, Table 1 shows the error for the polynomial p̃(6) to be
almost as small as for the best polynomial p̃(4).
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Exercise 7.11

Carry out the computations of Subsection 7.5 with relative noise ‖n‖/‖f‖ = 0.1 and ‖n‖/‖f‖ =
0.001. Determine analogs of Table 1. What are the optimal values of ℓ for these noise levels? 2

Exercise 7.12

Discuss how one might be able to determine a suitable value of ℓ in Exercise 7.11 when the errors
f̃j − fj are not known? 2

Exercise 7.13

Solve the polynomial approximation problem of Section 7.5 by using QR factorization of the matrix
A. Polynomials of lower degree can be fitted by removing the last column(s) of A. How does the
QR factorization change when the last column of A is removed? Compare the quality of computed
polynomial of different degrees. See Example 6.5 of Lecture 6 for more details on polynomial
least-squares approximation. 2

7.6 Computation of the SVD

The computation of the SVD (2) of an m×n matrix A with m ≥ n requires about 10mn2 arithmetic
floating point operations and therefore is quite expensive for large matrices. The first phase of
the computation is to reduce A to a bidiagonal matrix using Householder transformations. The
first Householder transformation, H1, is applied from the left-hand side to create zeros below the
diagonal in the first column, just like the first step of QR factorization. Let for notational simplicity
A be a 5 × 4 matrix and denote entries that may be nonzero by ∗. Then

H1A =













∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗













.

We next apply the Householder matrix H2 from the right-hand side to create zeros in all but the
first two entries of row one. This yields

H1AH2 =













∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗













.
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We refer to the matrix H2 as a Householder matrix, but strictly speaking it is of the form Ĥ(2)

in formula (11) of Lecture 6. Note that one cannot also zero out the (1, 2)-entry of H1A without
risking fill-in of nonzero entries in the first column. Therefore, we determine a bidiagonal matrix
instead of a diagonal one.

Another Householder matrix, H3, is applied from the left-hand side to set all elements below the
diagonal in the second column to zero. This matrix is of the form Ĥ(3) in formula (13) of Lecture
6. The matrix H3 does not affect the first row and first column of H1AH2. Thus,

H3H1AH2 =













∗ ∗
∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗













.

We now apply the Householder matrix H4 from the right-hand side to set the (2, 3)-entry to zero
and the Householder matrix H5 from the left-hand side to zero out all entries below the diagonal
in the third column of the resulting matrix. This gives the matrix

H5H3H1AH2H4 =













∗ ∗
∗ ∗

∗ ∗
∗
∗













,

which is almost bidiagonal. It remains to apply a Householder matrix, H6, from the left-hand side.
The matrix H6 acts on the last two rows of H5H3H1AH2H4 and is designed to set the (5, 4)-entry
to zero. This gives the desired bidiagonal matrix

H6H5H3H1AH2H4 =













∗ ∗
∗ ∗

∗ ∗
∗













. (31)

The next phase of the computation of the SVD of A is to transform the bidiagonal matrix
(31) to diagonal form. This will give Σ. The transformation of the matrix (31) to diagonal form
is carried out by application of orthogonal matrices from the left-hand side and from the right-
hand side. This is an iterative process, which requires the application of quite a large number
of orthogonal matrices. The product of all orthogonal matrices applied from the left-hand side,
including H6H5H3H1, makes up the matrix UT in (2). Similarly, the product of all orthogonal
matrices applied from the right-hand side, including H2H4, makes up the matrix V .

This method for computing the SVD of a matrix is closely related to methods for determining
eigenvalues and eigenvectors of a symmetric matrix. The latter methods will be discussed in a later
lecture, and we will return to the computation of the SVD at that time.
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Exercise 7.14

Reduce the matrix

A =









1 2 3
2 3 4
4 5 6
1 7 8









to bidiagonal form by application of Householder matrices. 2

Exercise 7.15

The reduction to bidiagonal form can be sped up when the matrix A has many more rows than
columns by first computing its QR factorization and then reducing the triangular matrix to bidi-
agonal form as descibed above.

Assume that the QR factorization of the matrix A ∈ R
10×3 is available. Describe how a

bidiagonal matrix can be determined from the upper triangular matrix in the QR factorization by
application of only two Householder-type matrices. What is the analog of (31)? 2

Exercise 7.16

What is the computational effort required to compute the bidiagonal form (31)? You may assume
that m = n. 2

Exercise 7.17

What is the computational effort required to compute the bidiagonal form (31) when m ≫ n? The
computations can be arranged as in Exercise 7.15. 2
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