
9 Searching the Internet with the SVD

9.1 Information retrieval

Over the last 20 years the number of internet users has grown exponentially with time; see Figure
1. Trying to extract information from this exponentially growing resource of material can be a
daunting task. Information retrieval (IR) is an interdisciplinary science, which is concerned with
automated storage and retrieval of documents.

1988 1991 1994 1997 2000
0

1

2

3

4

5

6

7

8
x 10

7

N
um

be
r

of
 In

te
rn

et
 U

se
rs

Figure 1: Internet data obtained from the website http://www.isc.org/ds/host-count-history.html.

IR systems are used to handle extremely large sets of digital data and help reduce information
overload.1 One of the largest digital data sets is the Internet with more than 20 billion web pages.
Extraction of a small subset of useful information from this huge digital data set requires a web
search engine. The grandfather of search engines, which was really not a search engine, was called
Archie and was created in 1990 by Peter Deutsch, Alan Emtage, and Bill Wheelan. After Archie,
followed a whole array of search engines; World Wide Web Wanderer (1993), Excite (1993), Yahoo
(1994), Infoseek (1994), Lycos (1994), AltaVista (1995), and Google (1997) to name a few. In this
lecture you will learn how to create a web search engine using a vector space model.

0Version November 4, 2013
1The term Information overload was originated in 1970 by Alvin Toffler in his book Future Shock. It refers to

having too much information in order to make a decision.

1

9.2 A vector space model

Central for the discussion to follow are the term-by-document matrices. A term-by-document
matrix A = [ai,j] is constructed by letting the entries ai,j represent the frequency of the term i in
document j. We are interested in the situation when the documents are web pages, however, the
method described can be applied to other documents as well, such as letters, books, phone calls,
etc.

Doc1

Math, Math, Calculus, Algebra

Doc2

Math, Club, Advisor

Doc3

Computer, Club, Club

Doc4

Ball, Ball, Ball, Math Algebra

Advisor

Algebra

Ball

Calculus

Club

Computer

Math

Doc1 Doc2 Doc3 Doc4

 0 1 0 0

 1 0 0 1

 0 0 0 3

 1 0 0 0

 0 1 2 0

 0 0 1 0

 2 1 0 1

Figure 2: The term-by-document matrix for Example 9.1.

Example 9.1

Consider the term-by-document matrix of Figure 2. The words (=terms) of interest are Advisor,
Algebra, Ball, Calculus, Club, Computer, and Math. There are four documents or web pages.
Therefore the term-by-document matrix is of size 7 × 4. Notice that a3,4 = 3 shows that in
document 4, the term Ball occurs 3 times, and a5,2 = 1 indicates that in document 2 the term Club
occurs once. Term-by-document matrices are inherently sparse, since every word does not normally
appear in each document. 2

Example 9.2

The term-by-document matrix, Hypatia, of the web server of the mathematics department at the
University of Rhode Island is of size 11, 390× 1, 265 with 109, 056 non-zero elements. The matrix
is sparse because only a small fraction of its entries are nonvanishing (less than 1%). The Matlab
command spy can be used to visualize the sparsity structure of a matrix. Figure 3 depicts the
sparsity structure of Hypatia. 2

2

0 200 400 600 800 1000 1200

0

2000

4000

6000

8000

10000

nz = 109056

Figure 3: Sparsity pattern of the 11, 390×1, 265 term-by-document matrix Hypatia. This matrix is available
at http://www.math.uri.edu/∼jbaglama/software/hypatia.gz

How does one search (i.e., query) a system to determine which documents contain the search
element? A simple approach would be to return the nonvanishing elements of the row of the
term-by-document matrix that match the search element.

Example 9.3

We would like to search for Club using the term-by-document matrix of Figure 2. The row corre-
sponding to Club in this matrix is [0 1 2 0]. This shows that documents 2 and 3 contain the word
Club.

Consider instead searching for the term Algebra. The row of the term-by-document matrix
corresponding to Algebra is [1 0 0 1]. This identifies the documents 1 and 4. 2

However, for very large matrices the approach of Examples 9.2 and 9.3 to identify documents
is not practical. A reason for this is that there are many ways to express a given concept (club,
organization, society) and the literal terms in a user’s query may not match those of relevant
documents. For this reason, the number of documents identified may be too small. On the other
hand, many words have multiple meanings (club, stick) and therefore terms in a user’s query will
literally match terms in irrelevant documents. The number of documents identified therefore may be
much too large. Moreover, typically one does not only want to know about matches, but one would

3

like to know the most relevant documents, i.e., one would like to rank the documents according to
relevance.

Example 9.4

Consider the matrix A from Figure 2, and a query vector for Club,

A =



0 1 0 0
1 0 0 1
0 0 0 3
1 0 0 0
0 1 2 0
0 0 1 0
2 1 0 1


q =



0
0
0
0
1
0
0



Advisor
Algebra
Ball
Calculus

← Club
Computer
Math

(1)

The angle θj between the column of A(:, j) of a term-by-document matrix and the query vector
q can be computed by

cos(θj) =
qTA(:, j)
‖q‖‖A(:, j)‖

, j = 1, 2, , (2)

Notice that when q is identical with the jth column of A, the angle between q and this column
vanishes and the cosine of this angle is one. Thus, a large value of cos(θj) suggests that document
j may be relevant.

In particular, for the term-by-document matrix (1) and query vector q for Club we have,

cos(θ1) = 0, cos(θ2) = 0.5774, cos(θ3) = 0.8944, cos(θ4) = 0. (3)

This shows that document 3 is the best match. 2

At this stage of the development of the vector space model for a search engine, using vectors and
matrices does not seem different from simply returning the row of the term-by-document matrix
that matches a term, such as Club. However, it will soon become evident why the Singular Value
Decomposition (SVD) is needed.

Let us look at Example 9.1 visually in a two-dimensional plot. In order to be able to do this, we
need to project our data into a two-dimensional space. The SVD of the term-by-document matrix
A helps us to determine this mapping. Recall that the SVD of a matrix A ∈ Rm×n with m ≥ n is
given by

A = UΣV T , (4)

where
U = [u1,u2, . . . ,um] ∈ Rm×m and V = [v1,v2, . . . ,vn] ∈ Rn×n

are orthogonal and the diagonal entries of

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n

4

satisfy σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. In applications of the SVD to document retrieval, the columns uj
of U commonly are referred to as term vectors and the columns vj of V as document vectors.

The decomposition (4) can be expressed in terms of the columns of U and V explicitly,

A =
n∑
j=1

σjujvTj . (5)

According to Exercise 7.7,
‖σjujvTj ‖ = σj .

Thus, the norm of the terms in the sum (5) are nonincreasing functions of j; generally, the norm
decreases as j increases. This is illustrated by Figure 6 below.

Similarly as in Lectures 7 and 8, we approximate A by the matrix

Ak =
k∑
j=1

σjujvTj , (6)

determined by ignoring the last n− k terms in the sum (5). Let

Uk = [u1,u2, . . . ,uk] ∈ Rm×k, Vk = [v1,v2, . . . ,vk] ∈ Rn×k,

and
Σk = diag[σ1, σ2, . . . , σk] ∈ Rk×k.

Then
Ak = UkΣkV

T
k . (7)

The projection of the scaled documents onto a k-dimensional space is given by

VkΣk = ATUk, (8)

see Exercise 9.1, and, similarly, the projection of the scaled terms onto a k-dimensional space can
be expressed as

UkΣk = AVk. (9)

In particular, we can determine a two-dimensional plot of the terms and documents by using the
first two columns of UkΣk and VkΣk.

Example 9.5

Regard Figure 4, which shows the two-dimensional projection of the terms and documents of
Example 9.1. Let ej = [0, . . . , 0, 1, 0, . . . , 0]T denote the jth axis vector. The point

eT5 U2Σ2 = (σ1u1,5, σ2u2,5) = (−0.2897, 2.0005)

5

Figure 4: Two-dimensional plot of the projected terms and documents of Example 9.1.

is the projection of the 5th term (Club), where uj,5 denotes the 5th entry of the vector uj ; see
Tables 1 and 2. Similarly,

eT3 V2Σ2 = (σ1v1,3, σ2v2,3) = (−0.1761, 1.8738)

6

x-coordinates y-coordinates
Terms σ1u1 σ2u2

Documents σ1v1 σ2v2

Table 1: Data for Example 9.5.

σ1u1 σ2u2 σ1v1 σ2v2

−0.1911 0.5194 −1.5889 0.7502
−1.3185 −0.0100 −0.6821 1.3144
−2.6205 −0.9194 −0.1761 1.8738
−0.4450 0.2965 −3.1187 −0.7755
−0.2897 2.0005
−0.0493 0.7405
−1.9546 0.8059

Table 2: Data for Example 9.5.

is the projection of the 3rd document. The projections of the 5th term and 3rd document are
close, which indicates that Doc3 is likely to be a relevant document when we search for Club, in
agreement with the discussion above.

However, if we search for Algebra (the 2nd term), then it is not so obvious from Figure 4
which document is most relevant. In order find out, we project the query vector for Algebra
(q = [0 1 0 0 0 0 0]T) onto the document space. The scaled projection of the query vector is given
by

q(p) = qTUk.

A comparison with equation (8) shows that the query vector q is projected the same way as the
documents, i.e., the query vector can be thought of as a column of A, i.e., as another document.
If the angle between the vector q(p) and the projected document is small, then the document may
contain information related to the query.

Figure 5 displays the projected query vector q(p) for Algebra along with plots of the projected
terms and documents. Note that Algebra does not appear in Doc2 in Example 9.1, however, Figure
5 shows the angle between q(p) and the projection of Doc2 to be smaller than 90o. This indicates
that Doc2 may be somewhat relevant to Algebra.

Doc2 contains the words Club, Math, and Advisor, and Doc4 and Doc1 contain the words Math
and Algebra. All three documents contain the word Math, and therefore the documents may be
relevant to the query. Hence, Doc2 could be relevant. Also, notice that Doc3 does not contain the
words Math and Algebra, which indicates that this document is unrelated to the query. In fact,
the angle between the query vector for Algebra and Doc3 in Figure 5 is almost 90o. 2

7

Figure 5: Two-dimensional plot of the projected query vector q(p) for Algebra and of the projected
terms and documents of Example 9.1.

Literally matching terms in documents with a query does not always yield clear answers. A
better approach is to match a query with the meaning of a document. Latent Semantic Indexing
(LSI) does just that. It overcomes the problems of lexical matching by using statistically derived
quantities instead of individual words for matching.

9.3 Latent semantic indexing (LSI)

Latent semantic indexing examines the whole document collection to determine which documents
contain similar words. LSI considers documents that have words in common to be semantically
close, and documents with few words in common to be semantically distant.

Let Ak be the rank k approximation (6) of A. Working with Ak instead of A has several
advantages. Since the small terms in the expansion (5) are neglected the important information,
which is represented by the first terms in the expansion, is now easier accessible. Moreover, we can
store Ak in factored form (7) without explicitly forming the elements of Ak. For large matrices A,
storage of Ak in this manner typically requires much less computer memory than storage of the
matrix A. We remark that there are methods for computing the matrices Uk, Vk, and Σk without
forming A; only matrix-vector products with A and AT have to be evaluated.

The value of k in Ak is typically chosen experimentally. Even for a very large number of
documents, k = 100 often gives acceptable results. Figure 6 illustrates the magnitude of the

8

Figure 6: Singular values of the 11, 390× 1, 265 term-by-document matrix Hypatia.

singular values of the large term-by document matrix Hypatia. Notice that the singular values
σj decrease to zero very quickly, and a choice of k = 100 would be acceptable. We remark that
choosing k very large does not always result in better answers to queries. The reason for this is that
increasing k increases the search space. The added data is associated with small singular values
and does not always contain relevant information.

LSI works with the matrix Ak instead of with A. Specifically, one determines the angle between
the query vector q and every column of Ak. These angles can be computed similarly as the angles
(2). Thus, replacing A by Ak in (2) yields

cos(θj) =
qTAkej
‖q‖ ‖Akej‖

=
(qTUk)(ΣkV

T
k ej)

‖q‖ ‖ΣkV
T
k ej‖

, j = 1, 2, . . . , k, (10)

where ej denotes the jth axis vector. Note that qTUk and ΣkVk are projections of the query vector
and document vectors into k-dimensional spaces; cf. (8).

Now returning to Example 7.1 and using equation (10) with k = 2 for LSI, we obtain the
following results. For Club, we have

cos(θ1) = 0.4109, cos(θ2) = 0.7391, cos(θ3) = 0.7947, cos(θ4) = −0.1120,

which gives the ordering Doc3, Doc2, Doc1, and Doc4 of the documents, with Doc3 being the most
relevant and Doc4 the least relevant document. The query vector for Algebra yields

cos(θ1) = 0.3323, cos(θ2) = 0.1666, cos(θ3) = 0.0306, cos(θ4) = 0.3593,

9

which determines the ordering Doc4, Doc1, Doc2, and Doc3. Notice that the cosine of the angle
between Algebra and Doc3 is close to zero. This indicates that Doc3 is irrelevant for the query.
The angles reveal that Doc2 has some connection to Algebra.

Finally, we note that weighting of the terms in a term-by-document matrix can affect query
results significantly. Documents that have many words or repeat the same word many times are
erroneously given a high ranking without term weighting. The following section discusses this topic.

9.4 Term weighting

The weighting of the terms in a term-by-document matrix A can be carried out as follows. Set

ai,j = gi · ti,j · dj ,

where gi is the global weight of the ith term, ti,j is the local weight of the ith term in the jth
document, and dj is the normalization factor for document j. We will define term frequency fi,j as
the number of times the ith term appears in the jth document.

Local weighting depends only on the term within a document and not the occurrence of the
term in other documents. Global weighting seeks to give a value to each term, depending on the
occurrences of the term in all documents. For instance, global weighting is used to correct for
differences in document lengths. In the tables below, n is the number of documents.

ti,j Local weighting scheme
χ(fi,j) 1 if the ith term is in the jth document and 0 otherwise

fi,j Frequency of the ith term in the jth document
This weighting is used in Example 9.1.

log(fi,j + 1) Logarithmic frequency to reduce the effects of large term frequency
(most used local weighting scheme)

Table 3: Examples of local weighting schemes.

Exercise 9.1

Show the formulas (8) and (9). 2

Exercise 9.2

a) Reproduce Figure 4.
b) Query for the term Calculus and produce a plot analogous to Figure 5. 2

10

gi Global weighting schemes
1 None

log(nPn
k=1 χ(fi,k)

) Inverse document frequency (IDF), emphasizes rare words
(most used global weighting scheme)Pn

k=1 fi,kPn
k=1 χ(fi,k)

GFIDF

1 +
∑n

j=1
pi,j ·log(pi,j)

log(n) , pi,j = fijPn
k=1 fi,k

Entropy, gives higher weights for terms with low frequency

Table 4: Examples of global weighting schemes.

dj Normalization schemes
1 None√∑n

k=1(gk · tk,j)2 Cosine normalization
(most used normalization scheme)

Table 5: Examples of normalization schemes.

Exercise 9.3

a) Use the local weighting scheme ti,j = log(fij + 1) (logarithmic frequency) for Example 9.1 and
produce a two-dimensional plot of the terms and documents similar to Figure 4.
b) Query for the term Calculus and produce a plot similar to Figure 5. 2

Exercise 9.4

a) Use the global weighting scheme log(nPn
k=1 χ(fi,k)

) (IDF) for Example 9.1 and produce a two-
dimensional plot of the terms and documents similar to Figure 4.
b) Query for the term Calculus and produce a plot similar to Figure 5. 2

Exercise 9.5

a) Use both the local weighting scheme ti,j = log(fij + 1) (logarithmic frequency) and the global
weighting scheme log(nPn

k=1 χ(fi,k)
) (IDF) for Example 9.1 and produce a two-dimensional plot of

the terms and documents similar to Figure 4.
b) Query for the term Calculus and produce a plot similar to Figure 5. 2

11

Exercise 9.6

Which was the best method, no weighting, local weighting only, global weighting only, or both local
and global weighting? Repeat your searches with a query vector for Calculus and Algebra. What
happens? What happens when you query for Calculus and Ball? 2

9.5 Project

We will investigate the LSI search engine method for a small set of FAQ for MATLAB. In the
directory http://www.math.uri.edu/∼/jbaglama/faq/ there are 68 frequently asked questions
about MATLAB. The questions are in individual text files (i.e., documents)

http://www.math.uri.edu/∼/jbaglama/faq/q1.txt
http://www.math.uri.edu/∼/jbaglama/faq/q2.txt

...
...

http://www.math.uri.edu/∼/jbaglama/faq/q68.txt

The file http://www.math.uri.edu/∼/jbaglama/faq/documents.txt contains a list of the
above documents. The file http://www.math.uri.edu/∼/jbaglama/faq/terms.txt contains the
list of all relevant terms in alphabetical order. There are 1338 terms. The file http://www.math.uri.edu/∼/jbaglama/faq/matrix.txt
contains the entries of the 1338 × 68 term-by-document matrix. The file matrix.txt was created
from the alphabetical list of terms and the sequential ordering of the questions. The first couple
lines of the file matrix.txt are:
%term by document matrix for FAQ
1338 68 2374
1 12 1
2 56 1
3 32 1
4 12 1
5 28 1
6 58 1
7 58 1
8 9 2
...
The first line is a comment line and the second line yields the number of columns, the number of
rows, and the number of non-zero entries. Only non-zero entries are stored. The (2, 56) entry of
the term-by-document matrix is equal to 1. This can be seen from line 4 of the file. The (2, 56)
entry of the term-by-document matrix is associated with the word absolute in question 56. The
weighting scheme is the same as in Example 9.1; only local term frequency is used.

12

Part 1:
Create a MATLAB code that can read the matrix in the file
http://www.math.uri.edu/∼/jbaglama/faq/matrix.txt into sparse format and plot the spar-
sity structure using the command spy, similarly to Figure 3.

Part 2:
Use both the local weighting scheme ti,j = log(fij + 1) (Logarithmic frequency) and the global
weighting scheme log(nPn

k=1 χ(fi,k)
) (IDF), and produce a two-dimensional plot of only the questions

q1, q2, . . . , q68.

Part 3:
Plot the query vector for ”variables” on the same axis as Part 2. Determine which documents
match the best. Plot the query vector for ”global” on the same axis as Part 2 and determine which
documents are most relevant.

References

[1] M. W. Berry and M. Browne, Understanding Search Engines: Mathematical Modeling and
Text Retrieval, 2nd ed., SIAM, Philadelphia, 2005.

[2] N. Polettini, The Vector Space Model in Information Retrieval - Term Weighting Problem,
http://sra.itc.it/people/polettini/PAPERS/Polettini Information Retrieval.pdf, 2004.

13

