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Abstract. We give a negative answer to Ulam’s Problem 19 from the
Scottish Book asking is a solid of uniform density which will float in
water in every position a sphere? Assuming that the density of water
is 1, we show that there exists a strictly convex body of revolution
K ⊂ R3 of uniform density 1

2
, which is not a Euclidean ball, yet floats

in equilibrium in every orientation. We prove an analogous result in all
dimensions d ≥ 3.

1. Introduction

The following intriguing problem was proposed by Ulam [U, Problem 19]:
If a convex body K ⊂ R3 made of material of uniform density D ∈ (0, 1)
floats in equilibrium in any orientation (in water, of density 1), must K be
a Euclidean ball?

Schneider [Sch1] and Falconer [Fa] showed that this is true, provided K
is centrally symmetric and D = 1

2 . No results are known for other densities
D ∈ (0, 1) and no counterexamples have been found so far.

The “two-dimensional version” of the problem is also very interesting. In
this case, we consider floating logs of uniform cross-section, and seek for the
ones that will float in every orientation with the axis horizontal. If D = 1

2 ,
Auerbach [A] has exhibited logs with non-circular cross-section, both convex
and non-convex, whose boundaries are so-called Zindler curves [Zi]. More
recently, Bracho, Montejano and Oliveros [BMO] showed that for densities
D = 1

3 , 1
4 , 1

5 and 2
5 the answer is affirmative, while Wegner proved that for

some other values of D 6= 1
2 the answer is negative, [Weg1], [Weg2]; see also

related results of Várkonyi [V1], [V2]. Overall, the case of general D ∈ (0, 1)
is notably involved and widely open.

In this paper we prove the following result.

Theorem 1. Let d ≥ 3. There exists a strictly convex non-centrally-
symmetric body of revolution K ⊂ Rd which floats in equilibrium in every

orientation at the level vold(K)
2 .

This gives
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Theorem 2. The answer to Ulam’s Problem 19 is negative, i.e., there exists
a convex body K ⊂ R3 of density D = 1

2 , which is not a Euclidean ball, yet
floats in equilibrium in every orientation.

Our bodies will be small perturbations of the Euclidean ball. We combine
our recent results from [R] together with work of Olovjanischnikoff [O], and
then use the machinery developed together with Nazarov and Zvavitch in
[NRZ]. The proofs of Theorem 1 for even and odd d are different. For even d
we solve a finite moment problem to obtain our body as a local perturbation
of the Euclidean ball. The case d ≥ 3 with odd d is more involved. To control
the perturbation, we use the properties of the spherical Radon transform,
[Ga, pp. 427-436], [He, Chapter III, pp. 93-99].

We refer the reader to [CFG, pp. 19-20], [Ga, pp. 376-377], [G], [M, pp.
90-93] and [U] for an exposition of known results related to the problem.

This paper is structured as follows. In Section 2, we recall all the necessary
notions and statements needed to prove the main result. In Section 3, we
reduce the problem to finding a non-trivial solution to a system of two
integral equations. In Section 4, we prove Theorem 1 for even d. In Section
5, we give the proof of Theorem 1 for odd d and prove Theorem 2. In
Appendix A, we present the proof of Theorem 3 given in [O]. We prove the
converse part of Theorem 4 in Appendix B.

2. Notation and auxiliary results

Let N = {1, 2, . . . , } be the set of natural numbers. A convex body K ⊂
Rd, d ≥ 2, is a convex compact set with non-empty interior intK. The
boundary ofK is denoted by ∂K. We say thatK is strictly convex if ∂K does
not contain a segment. We say that K is origin-symmetric if K = −K and
centrally-symmetric if there exists p ∈ Rd such that K−p = {q−p : q ∈ K}
is origin-symmetric. Let Sd−1 = {ξ ∈ Rd :

d∑
j=1

ξ2
j = 1} be the unit sphere

in Rd centered at the origin and let Bd
2 = {p ∈ Rd :

d∑
j=1

p2
j ≤ 1} be the

unit Euclidean ball centered at the origin. We denote by κd = vold(B
d
2)

the d-dimensional volume of Bd
2 and we let e1, . . . , ed be the standard basis

in Rd. Given ξ ∈ Sd−1, we denote by ξ⊥ = {p ∈ Rd : p · ξ = 0} the
subspace orthogonal to ξ, where p · ξ = p1ξ1 + · · · + pdξd is the usual inner

product in Rd. For p ∈ Rd we put |p| =
√
p2

1 + · · ·+ p2
d. We also denote by

B(ξ, ρ) = {p ∈ Sd−1 : p · ξ > ρ} the spherical cap centered at ξ ∈ Sd−1 of
radius ρ ∈ [−1, 1); we tacitly assume that B(ξ,−1) = Sd−1. We say that a
hyperplane H is the supporting hyperplane of a convex body K if K∩H 6= ∅,
but intK ∩H = ∅. Let Wj be a j-dimensional plane in Rd, 1 ≤ j ≤ d. The
center of mass of a compact convex set K ⊂ Wj with a non-empty relative
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interior will be denoted by C(K) = 1
volj(K)

∫
K

pdp, where volj(K) is the j-

dimensional volume of K and dp stands for the usual Lebesgue measure in
Rj . Given two sets A and B in Rd, we denote by A × B their Cartesian
product, i.e., the set of ordered pairs {(a, b) : a ∈ A, b ∈ B}. Let k ∈ N.
We say that a function h : R→ R supported on a closed interval [a, b] ⊂ R,
a < b, is in Ck (in C∞) if it has continuous derivatives up to order k (of all

orders). We define its norm as ‖h‖Ck =
k∑

m=0
max
{s∈[a,b]}

|h(m)(s)|, where h(m) is

the m-th derivative of h. We say that a convex body K ⊂ Rd is of class Ck

if K has a Ck-smooth boundary, i.e., for every point z ∈ ∂K there exists a
neighborhood Uz of z in Rd such that ∂K ∩Uz can be written as a graph of
a function having all continuous partial derivatives up to the k-th order.

Let d ≥ 3, let K ⊂ Rd be a convex body and let δ ∈ (0, vold(K)) be fixed.
Given a direction ξ ∈ Sd−1 and t = t(ξ) ∈ R, we call a hyperplane

H(ξ) = {p ∈ Rd : p · ξ = t}
the cutting hyperplane of K in the direction ξ, if it cuts out of K the given
volume δ, i.e., if

(1) vold(K ∩H−(ξ)) = δ, where H−(ξ) = {p ∈ Rd : p · ξ ≤ t(ξ)},
(see Figure 1).

We recall several well-known facts and definitions (see [DVP, Chapter
XXIV], [L, Chapter 2], [Tu, Chapter 4], [Zh, Hydrostatics, Part I]).

Definition 1. Let ξ ∈ Sd−1 and let Cδ(ξ) be the center of mass of the
submerged part K∩H−(ξ) satisfying (1). We say that K floats in equilibrium
in the direction ξ at the level δ if the line `(ξ) passing through C(K) and Cδ(ξ)
is orthogonal to the “free water surface” H(ξ), i.e., the line `(ξ) is “vertical”
(parallel to ξ, see Figure 1). We say that K floats in equilibrium in every
orientation at the level δ if `(ξ) is parallel to ξ for every ξ ∈ Sd−1.

Definition 2. The geometric locus {Cδ(ξ) : ξ ∈ Sd−1} is called the surface
of centers S = Sδ or the surface of buoyancy.

Now we recall the notion of characteristic points of a family of hyperplanes
(cf. [BG, pp. 107-110], [Wea, pp. 48-50], or [Za, pp. 26-54]).

Definition 3. Let d ≥ 2, ξ0 ∈ Sd−1, and let ρ ∈ [−1, 1). Consider a family
Q of hyperplanes in Rd such that for every direction ξ ∈ B(ξ0, ρ) there exists
a hyperplane in Q orthogonal to ξ. Assume also that for any H ∈ Q, for any
(d− 2)-dimensional subspace Γ parallel to H and for any sequence {Hk}∞k=1
of hyperplanes Hk ∈ Q converging to H as k →∞ and parallel to Γ, the limit
lim
k→∞

H ∩Hk exists. Given H ∈ Q, we call a point e ∈ H the characteristic

point of Q with respect to H if for any Γ and {Hk}∞k=1, as above, we have
e ∈ lim

k→∞
H ∩Hk.
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C(K)

Cδ(ξ)

H(ξ)

ℓ(ξ)

ξ

K

K ∩H−(ξ)

Figure 1. A body K, its submerged part K ∩ H−(ξ) and
the line `(ξ) passing through C(K) and Cδ(ξ).

We will need the following result from [O] (see the lemma on pp. 114-117
and Remark 1 on p. 117).

Theorem 3. Let d ≥ 3, let K ⊂ Rd be a convex body and let δ ∈ (0, vold(K)).
The characteristic points of the family of cutting hyperplanes {H(ξ) : ξ ∈
Sd−1} for which (1) holds are the centers of mass of the sections {K∩H(ξ) :
ξ ∈ Sd−1}.

Conversely, if the characteristic points of the family of hyperplanes {H(ξ) :
ξ ∈ Sd−1} intersecting the interior of K and corresponding to the sections
{K ∩H(ξ) : ξ ∈ Sd−1} coincide with the centers of mass of these sections,
then the function ξ 7→ vold(K∩H−(ξ)) is constant on Sd−1 and the constant
is equal to some δ ∈ (0, vold(K)).

Since the reference [O] is not readily available, for convenience of the
reader we present the proof of Theorem 3 in Appendix A.

To define the moments of inertia (see [Zh, p. 553]), consider a convex
body K and a hyperplane H(ξ) for which (1) holds. Choose any (d − 2)-
dimensional plane Π ⊂ H(ξ) passing through the center of mass C(K∩H(ξ))
and let η1, . . . , ηd−2, ηd−1 be an orthonormal basis of ξ⊥ = {p ∈ Rd : p·ξ = 0}
such that

(2) Π = C(K ∩H(ξ)) + span(η1, . . . , ηd−2), H(ξ) = C(K ∩H(ξ)) + ξ⊥.

Definition 4. The moment of inertia IK∩H(ξ)(Π) of K ∩H(ξ) with respect

to Π is calculated by summing dist(Π, p)2 for every “particle” p in the set
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K ∩H(ξ), (see Figure 2), i.e.,

(3) IK∩H(ξ)(Π) =

∫
K∩H(ξ)

dist(Π, p)2dp =

∫
K∩H(ξ)−C(K∩H(ξ))

(q · ηd−1)2 dq,

where dist(Π, p) = min
{q∈Π}

|p− q|.

0 η1

η2 q
q · η2

Π

K ∩H(ξ)

Figure 2. Two-dimensional body K ∩H(ξ) with center of
mass at the origin, and a line Π parallel to η1; we have
dist(Π, q)2 = |q|2 − (q · η1)2 = (q · η2)2.

We will use the converse part of the following theorem (see [R, Theorem
1] or [FSWZ, Theorem 1.1]1).

Theorem 4. Let d ≥ 3, let K ⊂ Rd be a convex body and let δ ∈ (0, vold(K)).
If K floats in equilibrium at the level δ in every orientation, then for all

ξ ∈ Sd−1 and for all (d − 2)-dimensional planes Π ⊂ H(ξ) passing through
the center of mass C(K ∩ H(ξ)), the cutting sections K ∩ H(ξ) have equal
moments of inertia independent of ξ and Π.

Conversely, let C(S) = C(K). If for all cutting hyperplanes H(ξ), ξ ∈
Sd−1, and for all (d − 2)-dimensional planes Π ⊂ H(ξ) passing through
the center of mass C(K ∩ H(ξ)), the cutting sections K ∩ H(ξ) have equal
moments of inertia independent of ξ and Π, then K floats in equilibrium in
every orientation at the level δ.

For convenience of the reader we prove the converse part of this theorem
in Appendix B2.

Remark 1. Let δ = vold(K)
2 . Since for any ξ ∈ Sd−1, C(K) is the arithmetic

average of C(K ∩H+(ξ)) and C(K ∩H−(ξ)), the condition C(S) = C(K) is
satisfied and S is symmetric with respect to C(K).

1It is assumed in [FSWZ] that in the case δ = vold(K)
2

the set of characteristic points

of the cutting hyperplanes is a single point.
2It is assumed in [R] that K is of class C1. We give a slightly different proof that does

not use this assumption.
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3. Reduction to a system of integral equations

Let d ≥ 3. We follow the notation from [NRZ]. We will be dealing with
bodies of revolution

Kf = {x ∈ Rd : x2
2 + x2

3 + · · ·+ x2
d ≤ f2(x1)}

obtained by the rotation of a smooth concave function supported on [−R1, R2]
about the x1-axis. Let L(s, t) = Ls(t) = st+ h(s) be a linear function with
slope s ∈ R, and let

H(Ls) = {x ∈ Rd : xd = Ls(x1)}
be the corresponding hyperplane. The function h will be chosen later. For
now it is enough to assume that it is infinitely smooth, not identically zero,
supported on [1 − 2τ, 1 − τ ] for some small τ > 0, and h and sufficiently
many of its derivatives are small. Let −x = −x(s) and y = y(s) be the first
coordinates of the points of intersection of ±f and L (see Figure 3).

xd

x1

Ls

(−x,−f(−x))

(y, f(y))

−x
yh(s)

f

−f

−R1 R2

Figure 3. Sections of Kf and H(L) by the (x1, xd)-plane.

To construct a system of two integral equations we will prove four lemmas.
Consider the family of hyperplanes

(4) F = {H(Ls) : s ∈ [0,∞)}.
Lemma 1. Let E be the set of characteristic points of F . Then,

(5) E = {(−h′(s), 0, . . . , 0, L(s,−h′(s))) ∈ Rd : s ∈ [0,∞)}.
Proof. Let G be the family of lines G = {`s : s ∈ [0,∞)}, where each line `s
is the intersection of H(Ls) and the x1xd-plane. It is enough to show that

E ∩ {x1xd−plane} = {(−h′(s),−sh′(s) + h(s)) ∈ R2 : s ∈ [0,∞)}.
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We will use Definition 3. Let s ∈ (1− 2τ, 1− τ) and let `s ∈ G. Choose any
sequence {`sk}∞k=1, `sk ∈ G, converging to `s as k → ∞, and let {usk}∞k=1,
{usk} = `s ∩ `sk , be the corresponding sequence of points of intersection.
Solving the system of two linear equations we see that

usk =
(h(s)− h(sk)

sk − s
, sk

h(s)− h(sk)

sk − s
+ h(sk)

)
.

Hence, lim
sk→s

usk exists and the point lim
sk→s

usk = (−h′(s),−sh(s) + h(s)) is

the characteristic point of G with respect to `s.
Next, we observe that (0, 0) is the characteristic point of G with respect to

`1−2τ . Indeed, it is enough to choose two sequences of lines in G, {`sk}∞k=1,
{`s′k}

∞
k=1, both converging to `1−2τ , such that sk ∈ (1 − 2τ, 1 − τ) and

s′k ∈ (0, 1−2τ), and to use the fact that `s′k∩`1−2τ = {(0, 0)} for any line `s′k
with s′k ∈ (0, 1−2τ). Similarly, to show that (0, 0) is the characteristic point
of G with respect to `1−τ , it is enough to choose the corresponding sequences
{`sk}∞k=1, {`s′′k}

∞
k=1, both converging to `1−τ , where sk ∈ (1− 2τ, 1− τ) and

s′′k ∈ (1− τ,∞).
To finish the proof, it remains to observe that since h is supported by

[1− 2τ, 1− τ ], any two lines `s, `s′ , s, s
′ ∈ [0, 1− 2τ) ∪ (1− τ,∞), intersect

at (0, 0). Hence, (0, 0) is the characteristic point of G with respect to any
line `s for s ∈ [0, 1− 2τ ] ∪ [1− τ,∞). �

Lemma 2. Let s > 0. The condition

(6) C(Kf ∩H(Ls)) = (−h′(s), 0, . . . , 0, L(s,−h′(s)))
reads as

(7)

y(s)∫
−x(s)

(t+ h′(s))(f(t)2 − L(s, t)2)
d−2
2 dt = 0.

Let

Π1 = {x ∈ H(Ls) : x1 = −h′(s)}, Πj = {x ∈ H(Ls) : xj = 0},
j = 2, . . . , d− 1. The moments of inertia conditions

Ij = IKf∩H(Ls)(Πj) = const, j = 1, . . . , d− 1,

read as

(8) I1 = κd−2(1 + s2)
3
2

y(s)∫
−x(s)

(t+ h′(s))2(f(t)2 − L(s, t)2)
d−2
2 dt = const,

(9) Ij = γd−2

√
1 + s2

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d
2 dt = const,
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where

γd−2 =

∫
Bd−2

2

p2
jdp, j = 2, . . . , d− 1.

Proof. Fix s > 0. Observe that the slice Kf ∩ H(Ls) ∩ Ht of the cutting

section Kf ∩ H(Ls) by the hyperplane Ht = {x ∈ Rd : x1 = t}, −x(s) <
t < y(s), is the (d− 2)-dimensional Euclidean ball

Bd−2
2 ((t, 0, . . . , 0, L(s, t)), r)={(t, x2, . . . , xd−1, L(s, t)) : x2

2+· · ·+x2
d−1 ≤ r2}

of radius r =
√
f2(t)− L2(s, t) centered at (t, 0, . . . , 0, L(s, t)). Hence, for

the first coordinate of the center of mass in (6) we have

(10)

y(s)∫
−x(s)

(t+ h′(s))dt
∫

Bd−2
2 ((t,0,...,0,L(s,t)),r)

dp =

κd−2

y(s)∫
−x(s)

(t+ h′(s))(f(t)2 − L(s, t)2)
d−2
2 dt = 0.

This gives (7).
Similarly, since the distance inKf∩H(Ls) between the points (t, x2, . . . , xd)

∈ Kf ∩ H(Ls) ∩ Ht and (−h′(s), x2, . . . , xd) ∈ Kf ∩ H(Ls) ∩ H−h′(s) is√
1 + s2|t+ h′(s)|, we have

I1 =
√

1 + s2

y(s)∫
−x(s)

(
√

1 + s2(t+ h′(s))2dt

∫
Bd−2

2 ((t,0,...,0,L(s,t)),r)

dp =

κd−2(1 + s2)
3
2

y(s)∫
−x(s)

(t+ h′(s))2(f(t)2 − L(s, t)2)
d−2
2 dt,

proving (8). Finally, the expression in the left-hand side of (9) for the other
moments can be obtained as

Ij =
√

1 + s2

y(s)∫
−x(s)

dt

∫
Bd−2

2 ((t,0,...,0,L(s,t)),r)

p2
jdp =

√
1 + s2 γd−2

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d
2 dt.

�
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Lemma 3. Let so ≥ 0, let Kf be as above and let F be the family of
hyperplanes defined as in (4) for s ≥ s0, so that (6) holds for s ≥ so.
Then for all s > so and for all (d − 2)-dimensional planes Π ⊂ H(Ls)
passing through the center of mass C(Kf ∩H(Ls)), the cutting sections Kf ∩
H(Ls) have equal moments of inertia IKf∩H(Ls)(Π) independent of s and

Π, provided (8) and (9) hold with the same constant on the right-hand side,
which is independent of s and j = 1, . . . , d− 1.

Proof. Let so ≥ 0 and let s > so be fixed. If Π ⊂ H(Ls) is any (d − 2)-
dimensional plane passing through the center of mass Cs = C(Kf ∩H(Ls)),
then by (3) we have

IKf∩H(Ls)(Π) =

∫
Kf∩H(Ls)

((u− Cs) · η)2 du,

where η = ηd−1 is a unit vector in the hyperplane H(Ls) − Cs which is
orthogonal to l.

Let ι1, . . . ιd−1 be the orthonormal basis in H(Ls) − Cs such that ι1 ∈
span{e1, ed} and ιj = ej for j = 2, . . . , d− 1. Decomposing η in this basis as
d−1∑
j=1

η(j)ιj , we have

IKf∩H(Ls)(Π) =
d−1∑
j=1

η2
(j)

∫
Kf∩H(Ls)

((u− Cs) · ιj)2 du+

d−1∑
j,l=1
j 6=l

η(j)η(l)

∫
Kf∩H(Ls)

((u− Cs) · ιj)((u− Cs) · ιl) du = J1 + J2.

Using the fact that η is a unit vector, together with (8) and (9), we have
that J1 is constant.

We claim that J2 = 0. Indeed, if j is equal to 1, then arguing as in the
previous lemma, and using the fact that

∫
Bd−2

2

pldp = 0 for l = 2, . . . , d − 1,

we see that ∫
Kf∩H(Ls)

((u− Cs) · ι1)((u− Cs) · ιl) du =

√
1 + s2

y(s)∫
−x(s)

(t+ h′(s))dt
∫

Bd−2
2 ((t,0,...,0,L(s,t)),r)

pldp = 0.

The case when l = 1 is similar.
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If j 6= 1, l 6= 1, then we use the fact that
∫

Bd−2
2

pjpldp = 0 for j, l =

2, . . . , d− 1, j 6= l, to obtain∫
Kf∩H(Ls)

((u−Cs)·ιj)((u−Cs)·ιl) du =

y(s)∫
−x(s)

dt

∫
Bd−2

2 ((t,0,...,0,L(s,t)),r)

pjpldp = 0.

Thus, IKf∩H(Ls)(Π) is a constant independent of s and of the arbitrarily
chosen Π. The lemma is proved. �

Lemma 4. Let so ≥ 0. Assume that (7) is valid for all s > so. Then (9)
holds for all s > so with the constant independent of s if and only if (8)
holds for all s > so with the constant independent of s.

Proof. We recall that

(11) L(s, t) = st+h(s), f(y(s)) = L(s, y(s)), f(−x(s)) = L(s,−x(s)),

for s ∈ R. Let so ≥ 0 and let s > so. We rewrite (9) as

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d
2 dt =

const

γd−2

√
1 + s2

and differentiate both sides with respect to s using (11). We have

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d−2
2 (st+ h(s))(t+ h′(s))dt =

const s

dγd−2 (1 + s2)
3
2

.

Adding and subtracting sh′(s) in the second parentheses under the integral
and using (7), the last equality yields

s

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d−2
2 (t+ h′(s))2dt =

const s

dγd−2 (1 + s2)
3
2

.

Canceling s and passing to polar coordinates,

dγd−2 =
d

d− 2

∫
Bd−2

2

|p|2dp =
d

d− 2

∫
Sd−3

dω

1∫
0

r2+d−3dr =
ω(Sd−3)

d− 2
= κd−2,

where ω(Sd−3) is the surface area of Sd−3, we have (8).
Now we prove the converse statement. Fix any j = 2, . . . , d − 1. We

rewrite the first equality in (9) as

Ij(s)

γd−2

√
1 + s2

=

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d
2 dt
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and differentiate both sides with respect to s. Using (7) and (8), we see that

(12)
( Ij(s)√

1 + s2

)′
=
I ′j(s)(1 + s2)− sIj(s)

(1 + s2)
3
2

= − const s

(1 + s2)
3
2

,

where the second equality above is obtained follows. Using (11) we differ-
entiate the first equality in (9) to obtain

I ′j(s)(1 + s2) = γd−2 s
√

1 + s2

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d
2 dt−

dγd−2(1 + s2)
3
2

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)
d−2
2 (st+ h(s))(t+ h′(s))dt.

Adding and subtracting sh′(s) in the second parentheses under the second
integral and using (7), the fact that dγd−2 = κd−2 and the second equality
in (8), we have

I ′j(s)(1 + s2)− sIj(s) = sIj(s)− sI1 − sIj(s) = −sI1 = −const s.
This gives the second equality in (12), i.e.,

I ′j(s)−
s

1 + s2
Ij(s) + const

s

1 + s2
= 0.

Solving this linear ODE with an integrating factor 1√
1+s2

, we have

Ij(s) =
√

1 + s2
( const√

1 + s2
+ c1

)
= const+ c1

√
1 + s2

with some constant c1. Since Ij is bounded on [so,∞), c1 = 0, and we obtain
the converse part of the lemma. �

Let

(13) fo(t) =
√

1− t2, Lo(s, t) = st, xo(s) = yo(s) =
1√

1 + s2
,

where fo describes the boundary of the unit Euclidean ball, Lo corresponds
to the linear subspace passing through the origin with h ≡ 0, and xo, yo are
the first coordinates of the points of intersection of ±f and Lo. Our goal is
to prove the following proposition.

Proposition 1. Let n = d
2 . A body Kf floats in equilibrium in every orien-

tation at the level vold(K)
2 , provided for all s > 0,

(14)

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)ndt =

yo(s)∫
−xo(s)

(fo(t)
2 − Lo(s, t)2)ndt =

const√
1 + s2

,
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(15)

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)n−1∂L(s, t)

∂s
dt = 0.

We remark that (14) and (15) are similar to equations (4) and (5) from
[NRZ].

Proof. Observe that H(L0) divides Kf into two parts of equal volume. Also,
(15) is the same as (7) of Lemma 2. Thus, by Lemma 1 and Lemma 2 the
characteristic points of the family of hyperplanes {H(Ls), s ∈ [0,∞)}, are
exactly the centers of mass of the sections K ∩ H(Ls). Hence, we can
apply the converse part of Theorem 3 to conclude that they are the cutting

hyperplanes at the level vold(K)
2 .

On the other hand, observing that conditions (14), (15) are the same as
(9) and (7), by Lemma 4 condition (8) also holds. Therefore, by Lemma 3,
the cutting sections have equal moments of inertia for all (d−2)-dimensional
planes passing through the centers of mass of these sections. By Remark
1, all conditions of the converse part of Theorem 4 are satisfied, and the
proposition follows. �

In order to construct a counterexample, we will choose the perturbation
function h with the properties described at the beginning of this section.
The convex body corresponding to any such function will automatically be
asymmetric since not all its sections dividing the volume in half will pass
through a single point.

4. The case of even d ≥ 4

Note that in this case n = d
2 ∈ N. Our argument is very similar to the

one in Section 3 of [NRZ]. Our body Kf will be a local perturbation of the

Euclidean ball, i.e., the resulting function f(t) will be equal to
√

1− t2 every-
where on [−1, 1] except [− 1√

1+(1−2τ)2
,− 1√

1+(1−τ)2
]∪[ 1√

1+(1−τ)2
, 1√

1+(1−2τ)2
]

for some small τ > 0.
Equations (11) show that to define f , it is enough to define two decreasing

functions x(s), y(s) on [0,+∞). Our functions x(s) and y(s) will coincide
with xo and yo for all s /∈ [1−2τ, 1−τ ], where xo, yo are defined by (13). Since
the curvature of the semicircle is strictly positive, the resulting function f
will be strictly concave if x and y are close to xo and yo in C2.

We will make our construction in several steps. First, we define x = xo,
y = yo on [1,∞). Second, we will express equations (14), (15) purely in
terms of x and y (see (18) and (19) below). Then we will use these new
equations to extend the functions x and y to [1 − 3τ, 1]. We will be able
to do it if τ and h are sufficiently small. Moreover, the extensions will
coincide with xo and yo on [1 − τ, 1] and will be close to xo and yo up to
two derivatives on [1 − 3τ, 1 − τ ]. Then, we will show that our extensions
automatically coincide with xo and yo on [1− 3τ, 1− 2τ ] as well. This will
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allow us to put x = xo, y = yo on the remaining interval [0, 1− 3τ ] and get
a nice smooth function. Finally, we will show that equations (14), (15) will
be satisfied up to s = 0, thus finishing the proof.

Step 1. We put x = xo, y = yo on [1,∞).

Step 2. To construct x, y on [1 − 3τ, 1], we will make some technical
preparations. First, we will differentiate equations (14), (15) a few times
to obtain a system of four integral equations with four unknown functions
x, y, x′, y′. Next, we will apply Lemma 8 and Remark 2 from [NRZ, pp.
63-66] to show that there exists a solution x, y, x′, y′ of the constructed

system of integral equations on [1− 3τ, 1], which coincides with xo, yo,
dxo
ds ,

dyo
ds on [1− τ, 1]. Finally, we will prove that the x and y components of that

solution give a solution of (14), (15) with f defined by (11).
Differentiating equation (14) n+ 1 times and equation (15) n times with

respect to s and using (11), we obtain

(−2)nn!
[((

L
∂L

∂s

)∣∣∣
(s,−x(s))

)ndx
ds

(s) +
((
L
∂L

∂s

)∣∣∣
(s,y(s))

)ndy
ds

(s)
]

+

(16)

y(s)∫
−x(s)

( ∂
∂s

)n+1(
(f(t)2 − L(s, t)2)n

)
dt =

( d
ds

)n+1( const√
1 + s2

)
,

and

(−2)n−1(n− 1)!
[((

L
∂L

∂s

)n−1∂L

∂s

)∣∣∣
(s,−x(s))

dx

ds
(s) +((

L
∂L

∂s

)n−1∂L

∂s

)∣∣∣
(s,y(s))

dy

ds
(s)
]

+

(17)

y(s)∫
−x(s)

( ∂
∂s

)n(
(f(t)2 − L(s, t)2)n−1∂L

∂s
(s, t)

)
dt = 0.

When s ≤ 1, the integral term I in (16) can be split as

I =

y(s)∫
−x(s)

( ∂
∂s

)n+1(
(f(t)2 − L(s, t)2)n

)
dt =

( −xo(1)∫
−x(s)

+

y(s)∫
yo(1)

)( ∂
∂s

)n+1(
(f(t)2 − L(s, t)2)n

)
dt + Ξ1(s),

where

Ξ1(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)n+1(
(fo(t)

2 − L(s, t)2)n
)
dt.
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Making the change of variables t = −x(σ) in the integral
∫ −xo(1)
−x(s) and t =

y(σ) in the integral
∫ y(s)
yo(1) and using (11), we obtain

I = −
1∫
s

( ∂
∂s

)n+1(
L(σ,−x(σ))2 − L(s,−x(σ))2

)n dx
ds

(σ)dσ−

1∫
s

( ∂
∂s

)n+1(
L(σ, y(σ))2 − L(s, y(σ))2

)n dy
ds

(σ)dσ + Ξ1(s).

Similarly, we have

y(s)∫
−x(s)

( ∂
∂s

)n(
(f(t)2 − L(s, t)2)n−1∂L

∂s
(s, t)

)
dt =

−
1∫
s

( ∂
∂s

)n((
L(σ,−x(σ))2 − L(s,−x(σ))2

)n−1∂L

∂s
(s,−x(σ))

) dx
ds

(σ)dσ−

1∫
s

( ∂
∂s

)n((
L(σ, y(σ))2 − L(s, y(σ))2

)n−1∂L

∂s
(s, y(σ))

) dy
ds

(σ)dσ + Ξ2(s),

where

Ξ2(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)n(
(fo(t)

2 − L(s, t)2)n−1∂L

∂s
(s, t)

)
dt.

To reduce the resulting system of integro-differential equations to a pure
system of integral equations we add two independent unknown functions x′,
y′ and two new relations:

x(s) = −
1∫
s

x′(σ)dσ + xo(1), y(s) = −
1∫
s

y′(σ)dσ + yo(1).

We rewrite our equations (16), (17) as follows:

(18) (−2)nn!
[((

L
∂L

∂s

)∣∣∣
(s,−x(s))

)n
x′(s) +

((
L
∂L

∂s

)∣∣∣
(s,y(s))

)n
y′(s)

]
−

1∫
s

( ∂
∂s

)n+1(
L(σ,−x(σ))2 − L(s,−x(σ))2

)n
x′(σ)dσ−

1∫
s

( ∂
∂s

)n+1(
L(σ, y(σ))2 − L(s, y(σ))2

)n
y′(σ)dσ + Ξ1(s) =
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ds

)n+1( const√
1 + s2

)
,

and

(19) (−2)n−1(n− 1)!
[((

L
∂L

∂s

)n−1∂L

∂s

)∣∣∣
(s,−x(s))

x′(s) +

((
L
∂L

∂s

)n−1∂L

∂s

)∣∣∣
(s,y(s))

y′(s)
]
−

1∫
s

( ∂
∂s

)n((
L(σ,−x(σ))2 − L(s,−x(σ))2

)n−1∂L

∂s
(s,−x(σ))

)
x′(σ)dσ−

1∫
s

( ∂
∂s

)n((
L(σ, y(σ))2−L(s, y(σ))2

)n−1∂L

∂s
(s, y(σ))

)
y′(σ)dσ+ Ξ2(s) = 0.

Now we rewrite our system in the form

(20) G(s, Z(s)) =

1∫
s

Θ(s, σ, Z(σ))dσ + Ξ(s).

Here

Z =


x
y
x′

y′

 ,

G(s, Z) =



x
y

(−2)nn!
[(
L∂L∂s

∣∣∣
(s,−x)

)n
x′ +

(
L∂L∂s

∣∣∣
(s,y)

)n
y′
]

(−2)n−1(n− 1)!
[((

L∂L∂s

)n−1
∂L
∂s

)∣∣∣
(s,−x)

x′ +
((
L∂L∂s

)n−1
∂L
∂s

)∣∣∣
(s,y)

y′
]


,

Θ(s, σ, Z) = −


x′

y′

Θ1

Θ2

 ,

where

Θ1 = −
( ∂
∂s

)n+1(
L(σ,−x)2−L(s,−x)2

)n
x′−

( ∂
∂s

)n+1(
L(σ, y)2−L(s, y)2

)n
y′ ,

Θ2 = −
( ∂
∂s

)n((
L(σ,−x)2 − L(s,−x)2

)n−1∂L

∂s
(s,−x)

)
x′−( ∂

∂s

)n((
L(σ, y)2−L(s, y)2

)n−1∂L

∂s
(s, y)

)
y′,
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and

Ξ(s) =


xo(1)
yo(1)

−Ξ1(s) +
(
d
ds

)n+1(
const√
1+s2

)
−Ξ2(s)

 .

Note that G, Θ, Ξ are well defined and infinitely smooth for all s, σ ∈ (0, 1]
and Z ∈ R4. Observe also that

DZG
∣∣∣
(s,Z)

=

(
I 0
∗ A

)
,

where

I =

(
1 0
0 1

)
, A = A(s, x, y) = (−2)nn!

((
L∂L∂s

)∣∣∣
(s,−x)

)n
(−2)nn!

((
L∂L∂s

)∣∣∣
(s,y)

)n
(−2)n−1(n− 1)!

((
L∂L∂s

)n−1
∂L
∂s

)∣∣∣
(s,−x)

(−2)n−1(n− 1)!
((
L∂L∂s

)n−1
∂L
∂s

)∣∣∣
(s,y)

 .

The function

Zo(s) =


xo(s)
yo(s)
dxo
ds (s)
dyo
ds (s)


solves the system (20) with G, Θ, Ξ corresponding to h ≡ 0 (we will denote
them by Go, Θo, Ξo) on [1

2 , 1].
We claim that

(21) det
(
DZGo

∣∣∣
(s,Zo(s))

)
= det(Ao(s, xo(s), yo(s))) 6= 0 ∀s ∈ (0, 1].

Indeed, since the matrix Ao(s, xo(s), yo(s)) is of the form(
(−2)nn!(sxo(s))

n (−2)nn!(syo(s))
n

(−2)n−1(n− 1)!(sxo(s))
n−1(−xo(s)) (−2)n−1(n− 1)!(syo(s))

n−1yo(s)

)
,

its sign pattern is(
+ +
+ −

)
, when n is even, and

(
− −
− +

)
, whenn is odd.

Thus, (21) follows. In particular,

det
(
DZGo

∣∣∣
(1,Zo(1))

)
6= 0.

Lemma 8 from [NRZ, p. 63] then implies that we can choose some small
τ > 0 and, for any fixed k ∈ N, construct a solution Z(s) of (20) which
is Ck-close to Zo(s) on [1 − 3τ, 1], whenever G, Θ, Ξ are sufficiently close
to Go, Θo, Ξo in Ck on certain compact sets. Since G, Θ, Ξ and their
derivatives are some explicit (integrals of) polynomials in Z, s, σ, h(s), and
the derivatives of h(s), this closeness condition will hold if h and sufficiently
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many of its derivatives are close enough to zero. Moreover, since h vanishes
on [1 − τ, 1], the assumptions of Remark 2 from [NRZ, p. 66] are satisfied
and we have Z(s) = Zo(s) on [1− τ, 1].

To prove that the x and y components of the solution we found give a
solution of (14), (15) with f defined by (11), we consider the functions

F (s) :=

y(s)∫
−x(s)

(
f(s, t)2 − L(s, t)2

)n
dt− const√

1 + s2
,

H(s) :=

y(s)∫
−x(s)

(
f(s, t)2 − L(s, t)2

)n−1∂L

∂s
(s, t)dt.

Since equations (18) and (19) of our system (20) were obtained by the dif-
ferentiation of equations (14), (15), we have( d

ds

)n+1
F (s) = 0,

( d
ds

)n
H(s) = 0

on [1−3τ, 1]. Hence, F and H are polynomials on [1−3τ, 1]. Since h(s) = 0,
x(s) = xo(s), y(s) = yo(s) on [1 − τ, 1], F and H vanish on [1 − τ, 1] and,
therefore, identically. Thus, we conclude that the x and y components of
the solutions of (18), (19) solve (14), (15) on (1−3τ, 1]. Step 2 is completed.

Step 3. We claim that x = xo, y = yo on [1−3τ, 1−2τ ], i.e., the perturbed
solution returns to the semicircle. Since h is supported on [1− 2τ, 1− τ ], we
have L = Lo = st and ∂

∂sL(s, t) = t for s ∈ [1 − 3τ, 1 − 2τ ]. It follows that
every time we differentiate equation (14) (with respect to s) we can divide
the result by s to obtain

(22)

y(s)∫
−x(s)

(f(t)2 − Lo(s, t)2)n−kt2kdt =

yo(s)∫
−xo(s)

(fo(t)
2 − Lo(s, t)2)n−kt2kdt,

for k ≤ n. If we take k = n in (22), we get

(23)

y(s)∫
−x(s)

t2ndt =

yo(s)∫
−xo(s)

t2ndt.

Similarly, for k ≤ n− 1, equation (15) implies that

(24)

y(s)∫
−x(s)

(f(t)2 − Lo(s, t)2)n−1−kt2k+1dt =

y(s)∫
−x(s)

(f(t)2 − Lo(s, t)2)n−1−kt2k+1dt = 0.
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Putting k = n− 1 in (24), we get

(25)

y(s)∫
−x(s)

t2n−1dt = 0 =

yo(s)∫
−xo(s)

t2n−1dt.

Equation (25) yields x(s) = y(s), and the symmetry (with respect to 0) of the
intervals (−xo(s), yo(s)), (−x(s), y(s)), together with (23), yield (−xo(s), yo(s))
= (−x(s), y(s)) for all s ∈ [1− 3τ, 1− 2τ ]. Step 3 is completed.

Step 4. We put x = xo, y = yo on [0, 1 − 3τ ], which will result in a

function f defined on [−1, 1] and coinciding with fo(t) =
√

1− t2 outside
small intervals around ± 1√

2
. It remains to check that (14), (15) are valid

for s ∈ [0, 1−3τ ]. We will prove the validity of (15). The proof for equation
(14) is similar and can be found in [NRZ, p. 53].

Since h ≡ 0 away from (1−2τ, 1−τ), we have L(s, t) = st for s ∈ [0, 1−3τ ],
so we need to check that

y(s)∫
−x(s)

(f(t)2− (st)2)n−1 tdt =

y(s)∫
−x(s)

(fo(t)
2− (st)2)n−1 tdt, ∀s ∈ [0, 1− 3τ ].

Recall that x = xo and y = yo everywhere on this interval, so we can write
x and y instead of xo and yo on the right-hand side.

Using the binomial formula, we see that it suffices to check that

(26)

y(s)∫
−x(s)

f(t)2j t2(n−1−j)+1dt =

y(s)∫
−x(s)

fo(t)
2j t2(n−1−j)+1dt,

∀j = 1, . . . , n − 1 and s ∈ [0, 1 − 3τ ]. Since f ≡ fo outside [−x(1 −
3τ), y(1 − 3τ)], splitting the integrals in (26) into three parts with ranges
[−x(s),−x(1− 3τ)], [−x(1− 3τ), y(1− 3τ)], [y(1− 3τ), y(s)], it is enough to
check (26) on the middle interval [−x(1− 3τ), y(1− 3τ)].

To this end, we first take s = 1− 3τ , k = n− 2 in (24) and conclude that

(27)

y(1−3τ)∫
−x(1−3τ)

f(t)2 t2n−3dt =

y(1−3τ)∫
−x(1−3τ)

fo(t)
2 t2n−3dt,

which is (26) for j = 1 and s = 1− 3τ . Now we go “one step up”, by taking
s = 1− 3τ , k = n− 3 in (24), to get

y(1−3τ)∫
−x(1−3τ)

(f(t)2 − (st)2)2t2n−5dt =

y(1−3τ)∫
−x(1−3τ)

(fo(t)
2 − (st)2)2t2n−5dt.
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The last equality together with (27) yield

y(1−3τ)∫
−x(1−3τ)

f(t)4 t2n−5dt =

y(1−3τ)∫
−x(1−3τ)

fo(t)
4t2n−5dt,

which is (26) for j = 2 and s = 1− 3τ . Proceeding in a similar way we get
(26) for j = 1, . . . , n− 1 and s = 1− 3τ . This finishes the proof of Theorem
1 in even dimensions. �

5. The case of odd d ≥ 3

Note that n = q + 1
2 , q ∈ N. Then (14) and (15) take the form

(28)
y(s)∫
−x(s)

(f(t)2 − L(s, t)2)q+
1
2dt =

yo(s)∫
−xo(s)

(fo(t)
2 − Lo(s, t)2)q+

1
2dt =

const√
1 + s2

,

(29)

y(s)∫
−x(s)

(f(t)2 − L(s, t)2)q−
1
2
∂L

∂s
(s, t)dt = 0,

where fo, Lo, yo, and xo are defined by (13).
Our argument is similar to the one in [NRZ, Section 4]. Our body of

revolution Kf will be constructed as a perturbation of the Euclidean ball.
We remark that in the case of odd dimensions, the perturbation will not be
local, meaning that the resulting function f(t) will be equal to

√
1− t2 on[

− 1√
1+(1−τ)2

, 1√
1+(1−τ)2

]
for some small τ > 0.

We will make our construction in several steps corresponding to the slope
ranges s ∈ [1,∞), s ∈ [1 − 3τ, 1], and s ∈ (0, 1 − 3τ ]. We will use different
ways to describe the boundary of Kf within those ranges. We will define

f(t) = fo(t) for t ∈
[
− 1√

2
, 1√

2

]
. We will differentiate (28), (29) and rewrite

the resulting equations in terms of x and y, to extend x and y to [1− 3τ, 1]
like we did in the even case. As before, f is related to x and y by (11).
Finally, we will change the point of view and define the remaining part of f
in terms of the functions R(α) and r(α), related to f by

(30) f(R(α) cosα) = R(α) sinα, f(−r(α) cosα) = r(α) sinα, α ∈ [0, π2 ].

Note that the radial function ρK(w) = sup{t > 0 : tw ∈ K} of the resulting
body K satisfies

(31) ρK(w) =

{
R(α) if w1 > 0,

r(α) if w1 < 0,

where w = (w1, . . . , wd) ∈ Sd−1 and α ∈ [0, π2 ], cosα = |w1|.
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Step 1. We put x = xo, y = yo on [1,∞), which is equivalent to putting

f(t) =
√

1− t2 for t ∈ [− 1√
2
, 1√

2
].

Step 2. Differentiating equation (28) q + 1 times, we obtain

(32)
( ∂
∂s

)q+1
y(s)∫
−x(s)

(f(t)2 − L(s, t)2)q+
1
2dt =

( −xo(1)∫
−x(s)

+

y(s)∫
yo(1)

)( ∂
∂s

)q+1(
(f(t)2 − L(s, t)2)q+

1
2

)
dt + E1(s) =

( d
ds

)q+1 const√
1 + s2

,

where

E1(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)q+1(
(fo(t)

2 − L(s, t)2)q+
1
2

)
dt.

Note that, unlike the function Ξ1 in the even-dimensional case, E1 is well
defined only for s ≤ 1 and only if ‖h‖C1 is much smaller than 1. Also,
even with these assumptions, E1(s) is C∞ on [0, 1) but not at 1, where it is
merely continuous.

Observe that( ∂
∂s

)q+1(
(f(t)2 − L(s, t)2)q+

1
2

)
=

J1(s, t, f(t))√
f2(t)− L2(t)

,

where J1(s, t, f) is some polynomial expression in s, t, f , h(s), and the
derivatives of h at s.

Making the change of variables t = −x(σ) in the integral
∫ −xo(1)
−x(s) , and

t = y(σ) in the integral
∫ y(s)
yo(1) and using (11), we can rewrite the sum of

integrals on the left-hand side of (32) as

−
1∫
s

[ J1(s,−x(σ), L(σ,−x(σ)))√
L(σ,−x(σ))2 − L(s,−x(σ))2

dx

ds
(σ)+

J1(s, y(σ), L(σ, y(σ)))√
L(σ, y(σ))2 − L(s, y(σ))2

dy

ds
(σ)
]
dσ.

Now write

L(σ, t)2 − L(s, t)2 = (L(σ, t)− L(s, t))(L(σ, t) + L(s, t)),

and

L(σ, t)− L(s, t) = σt+ h(σ)− st− h(s) = (σ − s)(t+H(s, σ)),

where

H(s, σ) =
h(σ)− h(s)

σ − s =

1∫
0

h′(s+ (σ − s)τ)dτ
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is an infinitely smooth function of s and σ. Let

K1(s, σ, t) =
J1(s, t, L(σ, t))√

(t+H(s, σ))(L(σ, t) + L(s, t))
.

The function K1 is well defined and infinitely smooth for all s, σ, t satisfying
(t+H(s, σ))(L(σ, t) + L(s, t)) > 0. If ‖h‖C1 is small enough, this condition
is fulfilled whenever s, σ∈ [1

2 , 1] and |t| > 1
2 .

Now we can rewrite equation (32) in the form

(33) −
1∫
s

(
K1(s, σ,−x(σ))

dx

ds
(σ) + K1(s, σ, y(σ))

dy

ds
(σ)
) dσ√

σ − s =

−E1(s) +
( d
ds

)q+1 const√
1 + s2

.

Similarly, we can differentiate (29) q times and transform the resulting
equation into

(34) −
1∫
s

(
K2(s, σ,−x(σ))

dx

ds
(σ) + K2(s, σ, y(σ))

dy

ds
(σ)
) dσ√

σ − s =

= −E2(s),

where K2 is well defined and infinitely smooth in the same range as K1.
The function E2 on the right-hand side of (34) is given by

E2(s) =

yo(1)∫
−xo(1)

( ∂
∂s

)q(
(fo(t)

2 − L(s, t)2)q−
1
2
∂L

∂s
(s, t)

)
dt,

and everything that we said about E1 applies to E2 as well.
Equations (33) and (34) together can be written in the form

(35)

1∫
s

K(s, σ, z(σ), dzds (σ))√
σ − s dσ = Q(s),

where, for z =

(
x
y

)
, z′ =

(
x′

y′

)
∈ R2,

K(s, σ, z, z′) = −
(
K1(s, σ,−x)x′ + K1(s, σ, y) y′

K2(s, σ,−x)x′ + K2(s, σ, y) y′

)
,

Q(s) =

 −E1(s) +
(
d
ds

)q+1
const√
1+s2

−E2(s)

 .
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By Lemma 8 in [NRZ, p. 63] with b = 1, equation (35) is equivalent to

(36) −G2(s, s, z, z′) +

1∫
s

∂

∂s
G2(s, σ, z(σ),

dz

ds
(σ))dσ = Q̃(s),

where

G2(s, σ, z, z′) =

1∫
0

K(s+ τ(σ − s), σ, z, z′)√
τ(1− τ)

dτ, Q̃(s) =
d

ds

1∫
s

Q(s′)√
s′ − s

ds′.

Note that

G2(s, s, z, z′) = C · K(s, s, z, z′), C =

1∫
0

dτ√
τ(1− τ)

.

To reduce the resulting system of integro-differential equations to a pure
system of integral equations we add two independent unknown functions x′,

y′, let z′ =
(
x′

y′

)
, zo(s) =

(
xo(s)
yo(s)

)
, and add two new relations

z(s) = −
1∫
s

z′(σ)dσ + zo(1).

Together with (36), they lead to the system

(37) G(s, Z(s)) =

1∫
s

Θ(s, σ, Z(σ))dσ + Ξ(s), Z =

(
z
z′

)
=


x
y
x′

y′

 .

Here

G(s, Z) =

(
z

−G2(s, s, z, z′)

)
, Θ(s, σ, Z) = −

(
z′

∂
∂sG2(s, σ, z, z′)

)
,

and

Ξ(s) =

(
zo(1)

Q̃(s)

)
.

In what follows, we will choose h so that ‖h‖C1 is much smaller than 1. In
this case, G, Θ are well defined and infinitely smooth whenever s, σ ∈ [1

2 , 1],

|x|, |y|> 1
2 , z′ ∈ R2, and Ξ is well defined and infinitely smooth on [1

2 , 1).
Observe also that

DZG
∣∣∣
(s,Z(s))

=

(
I 0
∗ A

)
,

where

I =

(
1 0
0 1

)
, A(s, z) = C · E(s, z),
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and

E(s, z) =

(
K1(s, s,−x) K1(s, s, y)
K2(s, s,−x) K2(s, s, y)

)
.

The function

Zo(s) =

(
zo(s)
dzo
ds (s)

)
=


xo(s)
yo(s)
dxo
ds (s)
dyo
ds (s)


solves the system (37) with G, Θ, Ξ corresponding to h ≡ 0 (we will denote
them by Go, Θo, Ξo) on [1

2 , 1], say.
We claim that

(38) det
(
DZGo

∣∣∣
(s,Zo(s))

)
= det(Ao(s, zo(s))) 6= 0 for all s ∈ [1

2 , 1].

Indeed, since K1,2(s, s, t) have the same signs as J1,2(s, ξ, L(s, t)) and since

J1(s, t, L(s, t)) = (2q + 1)!!
(
− L(s, t)

∂L

∂s
(s, t)

)q+1
,

J2(s, t, L(s, t)) = (2q − 1)!!
(
− L(s, t)

∂L

∂s
(s, t)

)q ∂L
∂s

(s, t),

we conclude that the matrix Ao(s, zo(s)) has the same sign pattern as the
matrix (

(−1)q+1 (−1)q+1

(−1)q(−xo(s)) (−1)qyo(s)

)
,

i.e., the signs in the first row are the same, and the signs in the second one
are opposite.

Thus, (38) follows. In particular,

det
(
DZGo

∣∣∣
(1,Zo(1))

)
6= 0.

Lemma 8 from [NRZ, p. 63] then implies that we can choose some small
τ > 0 and construct a Ck-close to Zo(s) solution Z(s) of (37) on [1− 3τ, 1]
whenever G, Θ, Ξ are sufficiently close to Go, Θo, Ξo in Ck on certain
compact sets. Since G, Θ, Ξ and their derivatives are (integrals of) explicit
elementary expressions in Z, s, σ, h(s), and the derivatives of h(s), this
closeness condition will hold if h and sufficiently many of its derivatives are
close enough to zero. Moreover, since h vanishes on [1−τ, 1], the assumptions
of Remark 2 from [NRZ, p. 66] are satisfied and we have Z(s) = Zo(s) on
[1− τ, 1].

The x and y components of Z solve the equations obtained by differenti-
ating (28) and (29). The passage to (28), (29) is now exactly the same as in
the even case.

Step 3. From now on, we change the point of view and switch to the
functions R(α) and r(α), α ∈ (0, π2 ), related to f by (30). The functions x
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and y, which we have already constructed, implicitly define C∞-functions
Rh(α) and rh(α) for all α with tanα > 1− 3τ .

Instead of parameterizing hyperplanes by the slopes s of the corresponding
linear functions, we will parameterize them by the angles β they make with
the x1-axis, where β is related to s by tanβ = s.

Our next task will be to derive the equations that will ensure that all
central sections corresponding to angles β with tanβ < 1− 2τ are the cut-
ting sections with equal moments with respect to any (d − 2)-dimensional
subspace passing through the origin. We will also ensure that the origin
is the center of mass of these sections. Note that the sections are already
defined and satisfy these properties when tanβ ∈ (1− 3τ, 1− 2τ).

It will be convenient to rewrite conditions (7), (8) and (9) in terms of the
spherical Radon transform (see [Ga, pp. 427-436]), defined as

Rf(ξ) =

∫
Sd−1∩ξ⊥

f(w)dw, f ∈ C(Sd−1), ξ ∈ Sd−1.

We will use the following proposition.

Proposition 2. Let K be a convex body of revolution about the x1-axis
containing the origin in its interior and let ξ = (± sinα, 0, . . . , 0,∓ cosα) ∈
Sd−1 be the unit vector corresponding to the angle α ∈ [0, π2 ). Then the

center of mass of the central section K ∩ ξ⊥ is at the origin if and only if

(39) (R(wjρ
d
K(w))(ξ) = 0, j = 1, . . . , d− 1.

Also, the moments of inertia of the central section K ∩ ξ⊥ with respect to
any (d − 2)-dimensional subspace Π are constant independent of Π if and
only if

(40) (R(w2
1ρ
d+1
K (w))(ξ) = const (d+ 1)(1− ξ2

1),

(41) (R(w2
jρ
d+1
K (w))(ξ) = const (d+ 1) for all j = 2, . . . , d− 1,

and

(42) (R(wjwlρ
d+1
K (w))(ξ) = 0, j, l = 1, . . . , d− 1, j 6= l.

Proof. If the center of mass of K ∩ ξ⊥ is at the origin, we have

1

vold−1(K ∩ ξ⊥)

∫
K∩ξ⊥

xdx = 0.

Passing to polar coordinates in ξ⊥ and taking into account the fact that for
w ∈ ξ⊥ we have wd = w1 tanα, we obtain the first statement of the lemma.

Let Π be any (d − 2)-dimensional subspace of ξ⊥ and let u = ud−1 be a
unit vector in ξ⊥ orthogonal to Π. By (3) the condition on the moments
reads as

(43) IK∩ξ⊥(Π) =

∫
K∩ξ⊥

(x · u)2dx = const ∀u ∈ Sd−1 ∩ ξ⊥.
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Denote by ι1, . . . ιd−1 the orthonormal basis in ξ⊥ such that ι1 = cosα e1+
sinα ed and ιj = ej for j = 2, . . . , d − 1. Passing to polar coordinates and

decomposing u in the basis {ιj}d−1
j=1 , we see that the moments of inertia of

the central section K ∩ ξ⊥ with respect to any (d− 2)-dimensional subspace
are constant if and only if

(44) (R((w · ι1)2ρd+1
K (w))(ξ) = const (d+ 1),

(41) holds, and

(45) (R((w · ιj)(w · ιl)ρd+1
K (w))(ξ) = 0, j, l = 1, . . . , d− 1, j 6= l,

(see the proof of Theorem 1 in [R]). Since w · ι1 = w1 cosα + wd sinα and
wd = w1 tanα, we see that (44) and (45) are equivalent to (40) and (42).
This gives the second statement and the lemma is proved. �

We remark that for any body of revolution around the x1-axis, (39) holds
for j = 2, . . . , d − 1. Taking u = ιj in the integral in (43), by rotation
invariance we obtain that the moments in (41) are equal for j = 2, . . . , d−1.
Also, arguing as at the end of the proof of Lemma 3 we see that (42) is valid.

By these remarks, Step 2, Lemma 4 with so = 1 − 3τ and Proposition
2 with K = Kf , when Kf is the body of revolution we are constructing,
equations (39), (40), (41) and (42) hold if tanα ∈ (1− 3τ, 1− 2τ) with the
constants in (40), (41) independent of ξ. Also, the left-hand sides of (39),
(40) and (41) are already defined on the cap

Uτ = {ξ ∈ Sd−1 : ξ1 = ± sinα, α ∈ [0,
π

2
], tanα ≥ 1− 3τ}

and are smooth even rotation invariant functions there.
Assume for a moment that we have constructed a smooth body Kf so

that conditions

(46) (R(w2
1ρ
d+1
Kf

(w))(ξ) = const (d+ 1)(1− ξ2
1), (R(w1ρ

d
Kf

(w))(ξ) = 0,

hold for all unit vectors ξ ∈ Sd−1 with ξ1 = ± sinα, corresponding to the
angles α ∈ [0, π2 ] such that tanα < 1 − 2τ . Then by the above remarks,
Proposition 2 and the converse part of Lemma 4 with so = 0, conditions (14),
(15) of Proposition 1 are satisfied for all s > 0 and Kf floats in equilibrium

in every orientation at the level vold(K)
2 .

Thus, it remains to construct the part of Kf so that (46) holds for all unit
vectors ξ corresponding to the angles α ∈ [0, 1 − 2τ ]. To this end, denote
by ϕh and ψh the left-hand sides of (46) defined on Uτ . We put ϕh(ξ) =
const (d+ 1)(1− ξ2

1) and ψh(ξ) = 0 for ξ ∈ Sd−1 such that ξ1 = ± sinα and
tanα ∈ [0, 1−2τ ]. This definition agrees with the one we already have when
tanα ∈ [1 − 3τ, 1 − 2τ ], so ϕh and ψh are even rotation invariant infinitely
smooth functions on the entire sphere.

Recall that the values of Rg(ξ) for all ξ ∈ Sd−1 such that ξ1 = ± sinα
and tanα > 1 − 3τ are completely determined by the values of the even
function g(w) for all w ∈ Sd−1 satisfying w1 = ± cosα and tanα > 1− 3τ .



26 D. RYABOGIN

Moreover, for bodies of revolution (but not in general) the converse is also
true (see the explicit inversion formula in [Ga, p. 433, formula (C.17)]).

Since the equation Rg = g̃ with even C∞ right-hand side g̃ is equivalent
to

g(ξ) + g(−ξ)
2

= R−1g̃(ξ),

we can rewrite the equations in (46) as

(47) w2
1(ρd+1

K (w) + ρd+1
K (−w)) = 2(R−1ϕh)(w)

and

(48) w1(ρdK(w)− ρdK(−w)) = 2(R−1ψh)(w).

The already constructed part of ρK satisfies these equations for the vectors
w ∈ Sd−1 such that w1 = ± cosα and tanα > 1− 3τ .

Since the spherical Radon transform commutes with rotations and our
initial ρK was rotation invariant, the even functions 2R−1ϕh(w), 2R−1ψh(w)
are rotation invariant as well and can be written as Φh(α) and Ψh(α), where
w ∈ Sd−1 is such that w1 = ± cosα and α ∈ [0, π2 ]. Note that the mappings

h 7→ Φh, h 7→ Ψh are continuous from Ck+d to Ck, say. Thus, for all h
sufficiently close to zero in Ck+d, Φh and Ψh will be close to Φ0 ≡ 2w2

1 and
Ψ0 ≡ 0 in Ck.

We will be looking for a rotation invariant solution ρK of (47) and (48),
which will be described in terms of the two functions R(α) and r(α) related
to it by (31). Equations (47) and (48) translate into

(49) Rd+1(α) + rd+1(α) =
Φh(α)

cos2 α
, Rd(α)− rd(α) =

Ψh(α)

cosα
.

Equations (49), together with the conditions R(α) > 0 and r(α) > 0, deter-
mine R(α) and r(α) uniquely, and they coincide with the functions Rh and
rh obtained in Step 2 for all α ∈ [0, π2 ] with tanα ≥ 1− 3τ . Therefore, any
solution R, r of this system will satisfy R(α) = Rh(α), r(α) = rh(α) in this
range.

If h and several of its derivatives are small enough, the functions Φh−2w2
1,

Ψh and several of their derivatives are uniformly close to zero. Since the map
(R, r) 7→ (Rd+1 +rd+1, Rd−rd) is smoothly invertible near the point (1, 1)
by the inverse function theorem, the functions R, r exist in this case on the
entire interval [0, π2 ], and are close to 1 in C2. Moreover, R′(0) = r′(0) = 0,

because Φ
′
h(0) = 0, Ψ

′
h(0) = 0, (otherwise the functions R−1ϕh, R−1ψh

would not be smooth at (1, 0, . . . , 0)). This is enough to ensure that the
body given by R and r is convex and corresponds to some strictly concave
function f defined on [−r(0), R(0)].

This completes the proof of Theorem 1 in the case of odd dimensions. �

It remains to prove Theorem 2. Assume that a body K ⊂ R3 has density
D and volume V . If K is submerged in liquid of density D′ and V ′ is the
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volume of a submerged part, then, by Archimedes’ law, DV = D′V ′, (cf. [H,
p. 257], [Zh, p. 657]). Taking D′ = 1 and V ′= 1

2V , we obtain the result. �

6. Appendix A: proof of Theorem 3 from [O]

6.1. The “if ” part. We begin with several auxiliary lemmas.

Lemma 5. Let d ≥ 2, let M ⊂ Rd be a convex body and let ε ∈ (0, 1).
Consider the neighborhood of ∂M , Uε = Uε(∂M) = {p ∈ Rd : dist(p, ∂M) <
ε} and let S(M) = Sd−1(M) be the (d− 1)-dimensional surface area of M .
Then vold(Uε) ≤ 6εS(M), provided ε is small enough.

Proof. We fix a small ε > 0 (we will choose it precisely later) and claim first
that

(50) vold(M ∩ Uε) ≤ vold((Rd \M) ∩ Uε).
Assume for a moment that M is a convex polytope and consider the rect-
angular prisms TF based on facets F of M of height 2ε, TF = F × [−ε, ε]
and such that F × (0, ε] ⊂ Rd \M , F × [−ε, 0] ⊂ M . The union of these
prisms inside M contains M ∩ Uε and the parts of prisms corresponding to
the neighboring facets intersect. On the other hand, the parts outside of M
do not intersect and the inequality for polytopes follows from

vold(M ∩ Uε) ≤ vold

(⋃
F

(F × [−ε, 0])
)
≤

≤ vold

(⋃
F

(F × [0, ε])
)
≤ vold((Rd \M) ∩ Uε).

The general case can be obtained by approximation of M by polytopes and
passing to the limit in the previous inequality. This proves the claim.

By (50) we have vold(Uε) ≤ 2vold((Rd \ M) ∩ Uε) and it is enough to
estimate the last volume. To do this, we will use the Steiner formula, [Sch2,
p. 208]:

vold(M + εBd
2) =

d∑
i=1

εd−iκd−ivi(M),

where

M + εBd
2 = {p = p1 + p2 ∈ Rd : p1 ∈M and p2 ∈ εBd

2},
and vi(M) are the intrinsic volumes of M , 1 ≤ i ≤ d, [Sch2, p. 214]. In
particular, vd(M) = vold(M) and vd−1(M) is the surface area S(M). Since

(Rd \M) ∩ Uε ⊆ (M + εBd
2) \M,

we obtain for d = 2,

vol2((R2 \M)∩Uε) ≤
2∑
i=1

ε2−iκ2−ivi(M)−vol2(M) = εκ1v1(M) = 2εS(M),
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and for d ≥ 3,

vold((Rd \M) ∩ Uε) ≤
d∑
i=1

εd−iκd−ivi(M)− vold(M) =

2εS(M) +

d−2∑
i=1

εd−iκd−ivi(M) ≤ 3εS(M),

provided ε is so small that ε(d− 2) max
1≤i≤d−2

(κd−ivi(M)) < S(M). This gives

the desired estimate. �

To prove the next result we introduce some notation. Let PH be the
orthogonal projection onto a hyperplane H. For a small ε > 0 we let

Ξε = PH({p ∈ ∂K : dist(p,H) < ε}).

Let D be the length of a diameter of K and let µ = 2Dd

vold(K∩H−(ξ))
. We put

(51) Σµε = {p ∈ H(ξ) : dist(p, ∂K ∩H(ξ)) < µε},
where H(ξ) is a hyperplane for which (1) holds.

Lemma 6. We have Ξε ⊂ Σµε, and vold−1(Σµε) < 6cdµD
d−2ε → 0 as

ε→ 0.

Proof. Consider a hyperplane G(ξ) ∈ H−(ξ) which is parallel to H(ξ) and
such that dist(H(ξ), G(ξ)) = ε for ε > 0 small enough. Consider also a
hyperplane T containing any two corresponding parallel (d−2)-dimensional
planes that support K ∩ H(ξ) and K ∩ G(ξ). In the half-space H−(ξ)
containing these sections choose an angle γ between T and H(ξ) which is
not obtuse (see Figure 4, cf. Figure 1 in [O]).

γ

T

H(ξ)

G(ξ)

K

ε
Ψ

Figure 4. The hyperplanes H(ξ), G(ξ), and T .
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Denote by Ψ the maximal distance between H(ξ) and any point in K ∩
H−(ξ). Then

Ψ ≤ D sin γ, vold(K ∩H−(ξ)) < Dd−1Ψ ≤ Dd sin γ.

On the other hand, if λ = vold(K∩H−(ξ))
vold(K) , then

vold(K ∩H−(ξ)) ≥ λ

1 + λ
vold(K) ≥ 1

2
λ vold(K),

which yields

sin γ >
λvold(K)

2Dd
, | cot γ| < 2Dd

λvold(K)
= µ.

Since the distance between the corresponding (d − 2)-dimensional support
planes to K ∩H(ξ) and PH(ξ)(K ∩G(ξ)) is ε| cot γ| < µε, we see that Ξε is
a subset of Σµε.

Let S be the (d− 2)-dimensional surface area of ∂K ∩H(ξ). Then

vold−1(Σµε) ≤ 6µεS(K ∩H(ξ)) < 6µεcdD
d−2 → 0, as ε→ 0.

The first inequality follows from Lemma 50, provided we identify H(ξ) with
Rd−1 and put M = K ∩ H(ξ). In the second inequality we used the fact
that the surface area of ∂K ∩ H(ξ) does not exceed cdD

d−2, where cd is
some constant depending on the dimension, (it follows, for example, from
inequality (7) in [CSG, Theorem 1]). �

Now consider a family W = WΓ of hyperplanes H satisfying (1) which
are parallel to some (d− 2)-dimensional subspace Γ. Each such hyperplane
is determined by the angle θ ∈ [0, 2π] it makes with some fixed H0 ∈ W (we
take the orientation into account). We will denote by H(θ) and H(θ +∆θ)
the hyperplanes in W making angles θ and θ + ∆θ with the chosen H0 =
H(0) = H(2π).

Lemma 7. For sufficiently small ∆θ the (d− 2)-dimensional plane H(θ) ∩
H(θ +∆θ) passes through K.

Proof. Observe first that for ∆θ small enough, the compact convex sets
K ∩ H−(θ) and K ∩ H−(θ + ∆θ) have a common point in the interior of
H−(θ). Indeed, let β be the smallest angle between H(θ) and the supporting
hyperplanes to K at points in ∂K ∩H(θ). As in the proof of Lemma 6, one
can show that

β > sinβ >
λvold(K)

2Dd
=

1

µ
.

Therefore, any supporting hyperplane to K making a positive angle with

H(θ) which is less than 1
µ , must also support K ∩ H−(θ). Let H̃(θ + ∆θ)

be the supporting hyperplane to K ∩ H−(θ + ∆θ) parallel to H(θ + ∆θ).

Then H̃(θ+∆θ) is also the supporting hyperplane to K ∩H−(θ), provided
∆θ < 1

µ . This proves the observation.
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Using the observation, we see that if H(θ) ∩ H(θ + ∆θ) does not pass
through K, then K ∩ H−(θ) and K ∩ H−(θ + ∆θ) are contained in one
another. This contradicts the fact that they have the same volume and the
result follows. �

Now choose a “moving” system of coordinates in which the (d − 2)-
dimensional plane H(θ) ∩ H(θ + ∆θ) is the p1p2 · · · pd−2-coordinate plane,
the axis pd−1 is in H(θ) and the axis pd is orthogonal to H(θ). We can
assume that ∆θ is acute and is less than 1

µ .

The next lemma is a direct consequence of the fact that all hyperplanes
in W satisfy (1). Denote by A4B the symmetric difference of two sets A
and B, i.e., A4B = (A \B) ∪ (B \A).

Lemma 8. Let Λ = (K ∩H(θ))4PH(θ)(K ∩H(θ +∆θ)). Then

(52) ∆V = vold(K ∩H−(θ))− vold(K ∩H−(θ +∆θ)) =∫
K∩H(θ)

pd−1 tan∆θ dp−
∫
Λ

ζd dp = 0,

where pd−1 = pd−1(θ,∆θ) and ζd = ζd(θ,∆θ) is an error of pd = pd−1 tan∆θ
in Λ which is obtained during the computation of ∆V using the first integral
above (see Figure 5).

∆θ H(θ)

H(θ +∆θ)

pd−1

ζd

K

Figure 5. The function ζd.

We are ready to finish the proof of the “ if ” part of Theorem 3. Let
pd−1(C(K ∩ H(θ))) be the (d − 1)-coordinate of C(K ∩ H(θ)) with respect
to the moving coordinate system. By (52), we have

pd−1(C(K ∩H(θ))) =

∫
K∩H(θ)

pd−1 dp

vold−1(K ∩H(θ))
=

∫
Λ

ζd dp

vold−1(K ∩H(θ)) tan∆θ
.
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Since for every p ∈ Λ there exists q ∈ ΞD sin∆θ such that PH(θ)q = p,
applying Lemma 6 we see that

vold−1(Λ) ≤ vold−1(ΞD sin∆θ) ≤ vold−1(ΣµD sin∆θ) ≤ 2cdµD
d−1∆θ → 0

as ∆θ → 0. Using the estimate |ζd| ≤ D tan∆θ, the previous inequalities
and the fact that Λ ⊂ ΣµD sin∆θ, we obtain

|pd−1(C(K ∩H(θ)))| ≤ D tan∆θ vold−1(Λ)

vold−1(K ∩H(θ)) tan∆θ
→ 0

as ∆θ → 0. We see that, as ∆θ → 0, the (d− 2)-dimensional plane H(θ) ∩
H(θ + ∆θ) tends to a limiting position that passes through the center of
mass of K ∩H(θ).

To show that C(K∩H(θ)) is the characteristic point of H(θ), it is enough
to take any (d− 2)-dimensional subspace Γ′ that is parallel to H(θ), and to
repeat the above considerations for the family of hyperplanes WΓ′ that are
parallel to Γ′.

Since the subspace Γ and the angle θ were chosen arbitrarily, we obtain
the proof of the “ if ” part of the theorem.

6.2. Proof of the converse part of Theorem 3. Let Γ be an arbitrary
(d−2)-dimensional subspace and let V be a family of hyperplanes H parallel
to Γ and such that for all H ∈ V the centers of mass of K ∩H coincide with
the characteristic points of H. Also, as above, choose an arbitrary angle
θ, the hyperplanes H(θ) and H(θ + ∆θ) in V and a “moving” coordinate
system. Since C(K∩H(θ)) is the characteristic point of H(θ) we can assume
that pd−1(C(K ∩H(θ)))→ 0 as ∆θ → 0.

Using (52) we have

∆V

∆θ
=

tan∆θ

∆θ

∫
K∩H(θ)

pd−1 dp−
∫
Λ

ζd
∆θ

dp.

Since C(K ∩H(θ+∆θ))→ C(K ∩H(θ)) and ∂K ∩H(θ+∆θ)→ ∂K ∩H(θ)
as ∆θ → 0, the set Λ defined in Lemma 8 satisfies vold−1(Λ)→ 0 as ∆θ → 0.
Using this and the fact that |ζd| ≤ D tan∆θ we see that both summands in
the right-hand side of the above identity tend to 0 as ∆θ → 0. This gives
lim
∆θ→0

∆V
∆θ = 0.

Now consider the function ξ 7→ g(ξ) := vold(K ∩H−(ξ)) on Sd−1, where
H(ξ) is the hyperplane from our family V. By condition of the theorem, for
every ξ ∈ Sd−1 the center of mass C(K ∩H(ξ)) is the characteristic point of
H(ξ) and for any sequence {ξk}∞k=1, ξk ∈ Sd−1, converging to ξ as k →∞ we
have C(K ∩H(ξk))→ C(K ∩H(ξ)). Since Γ and θ were chosen arbitrarily,
writing g(ξ) in terms of the spherical angles ϕ1, . . . , ϕd−1, ϕj ∈ [0, π), j =
1, . . . , d − 2, ϕd−1 ∈ [0, 2π), we can choose the corresponding sequences
{ξj,k}∞k=1, ξj,k ∈ Sd−1, converging to ξ(ϕ1, . . . , ϕd−1), so that ∂

∂ϕj
g(ξ) = 0
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for all ξ ∈ Sd−1 and all j = 1, . . . , d − 1. Therefore, g must be constant on
Sd−1. The proof of the converse part is complete.

This finishes the proof of Theorem 3. �

7. Appendix B: proof of the converse part of Theorem 4

We start by recalling the so-called First Theorem of Dupin, (cf. [Zh, pp.
658-660] and [DVP, pp. 275-279]; see also [R, Theorem 4]).

It was proved in [HSW, Theorem 1.2] that the surface of centers S is
Ck+1-smooth, provided K is of class Ck, k ≥ 0. In particular, if K is an
arbitrary convex body then S is C1-smooth.

Let Γ be any (d − 2)-dimensional subspace of Rd. We let the family
W = WΓ of hyperplanes H(θ), θ ∈ [0, 2π], satisfying (1) and which are
parallel to Γ be as in the previous section. We will use the notation C(θ) ∈ S
for the centers of mass of the corresponding “submerged” parts K ∩H−(θ)
and H(θ) for the tangent hyperplane to S at C(θ).
Theorem 5. Let d ≥ 2, let K ⊂ Rd be a convex body and let δ ∈ (0, vold(K)).
Then for any Γ and for any H(θ) ∈ WΓ, θ ∈ [0, 2π], H(θ) is parallel to H(θ).
Also, the bounded set L = L(S) with boundary S is a strictly convex body.

Proof. Fix Γ and θ ∈ [0, 2π). Rotating and translating if necessary we
can assume that H(θ) = e⊥d and K ∩ H−(θ) ⊂ {p ∈ Rd : pd ≤ 0}. Let

H(θ̃) ∈ WΓ, θ̃ 6= θ, θ̃ ∈ [0, 2π). We claim that C(θ̃) is “above” C(θ), i.e.,

pd(C(θ)) < pd(C(θ̃)). Indeed, since pd > 0 ∀p ∈ (K ∩H−(θ̃)) \ (K ∩H−(θ))

but pd ≤ 0 ∀p ∈ (K ∩H−(θ)) \ (K ∩H−(θ̃)), we have

pd(C(θ)) =
1

δ

( ∫
(K∩H−(θ))\(K∩H−(θ̃))

pddp+

∫
K∩H−(θ)∩H−(θ̃)

pddp
)
<

1

δ

( ∫
(K∩H−(θ̃))\(K∩H−(θ))

pddp+

∫
K∩H−(θ)∩H−(θ̃)

pddp
)

= pd(C(θ̃))

and the claim is proved.
Now let H(θ) be the hyperplane passing through C(θ) which is parallel

to H(θ) and let H±(θ) be the corresponding half-spaces. Since Γ and θ
were chosen arbitrarily, we see that S ⊂ H+(θ). Since S is C1-smooth and
S ∩H(θ) = C(θ), the hyperplane H(θ) is tangent to S at C(θ).

Thus, for any ξ ∈ Sd−1 we have S ⊂ H+(ξ), S ∩ H(ξ) = Cδ(ξ) and
min

{ξ∈Sd−1}
|C(K) − Cδ(ξ)| > 0. We conclude that L(S) =

⋂
{ξ∈Sd−1}

H+(ξ) is a

strictly convex body. �

To prove the converse part of Theorem 4 it is enough to show that the
orthogonal projection of S onto any 2-dimensional subspace of Rd is a disc.
Indeed, by applying [Ga, Corollary 3.1.6, p. 101] to L(S), we obtain that in
this case S is a sphere. Using Theorem 5, as well as the fact that all normal
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lines of the sphere intersect at its center, we see that for every ξ ∈ Sd−1 the
lines `(ξ) passing through C(K) = C(S) and Cδ(ξ) are orthogonal to H(ξ).
By Definition 1 this means that K floats in equilibrium in every orientation.

Let Γ be as above, let Γ⊥ be the 2-dimensional subspace orthogonal to Γ
and let P = PΓ⊥ be the orthogonal projection onto Γ⊥. To show that P (S)
is a disc for every Γ, we will prove the following lemma.

Lemma 9. Let ξ(θ) ∈ Sd−1 be the normal vector to H(θ), let β be a closed
curve {C(θ) : θ ∈ [0, 2π]} ⊂ S and let Pβ = {PC(θ) : θ ∈ [0, 2π]} be
parametrized as θ 7→ %(θ), θ ∈ [0, 2π]. Then

(53) %′(θ) = −1

δ
IK∩H(θ)(Π) ξ′(θ) ∀θ ∈ [0, 2π],

where Π is the (d− 2)-dimensional plane passing through C(K ∩H(θ)) and
parallel to Γ.

Assume for a moment that (53) is proved. By conditions of the theorem,
IK∩H(θ)(Π) is the constant c independent of Π and θ. Integrating both parts
in (53) we have %(θ) = −c ξ(θ) + C, where C is a constant vector. Hence,
Pβ is a circle. Since Γ was chosen arbitrarily, the projection of S onto any
2-dimensional subspace is a disc.

To finish the proof, it remains to prove the lemma.

Proof. We can assume that H(θ) = e⊥d , K ∩H−(θ) ⊂ {p ∈ Rd : pd ≤ 0} and
ρ(θ), ξ(θ), ξ′(θ) are 2-dimensional, i.e., %(θ) = (%d−1(θ), %d(θ)), ξ(θ) = (0, 1),
ξ′(θ) = (−1, 0). Since the tangent vector %′(θ) is parallel to H(θ) and since
H(θ) is parallel toH(θ) by the previous theorem, we conclude that %′d(θ) = 0.

To compute %′d−1(θ), we will estimate %d−1(θ + ∆θ) − %d−1(θ) for ∆θ
small enough. As in the previous appendix, we choose a “moving” system
of coordinates in which the (d− 2)-dimensional plane H(θ) ∩H(θ +∆θ) is
the p1p2 · · · pd−2-coordinate plane. We have

%d−1(θ +∆θ)− %d−1(θ) =
1

δ

( ∫
K∩H−(θ+∆θ)

pd−1dp−
∫

K∩H−(θ)

pd−1dp
)

=

=
1

δ

( ∫
K∩H(θ)

p2
d−1 tan∆θ dp−

∫
Λ

pd−1ζd dp
)
,

where the last equality is similar to (52), Λ and ζd are as in Lemma 8 (see
Figure 5). Dividing both parts by ∆θ, passing to the limit as ∆θ → 0 and
using the “ if ” part of the theorem proved in the previous appendix, we
obtain

%′d−1(θ) =
1

δ

∫
K∩H(θ)

p2
d−1dp =

1

δ
IK∩H(θ)(Π).

This gives (53). �
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Contributions to Algebra and Geometry, 45 (2004), No. 2, 549-555.

[CFG] H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved problems in geome-
try, Problem Books in Mathematics, Springer-Verlag, New York, 1991, Unsolved
Problems in Intuitive Mathematics, II.

[DVP] CH. J. De La Vallée Poussin, Lecons De Mécanique Analytique, Vol II, Paris,
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