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SEMLINFINITE AND INFINITE STRIPS FREE OF ZEROS

by RicHARD S. VARGA

§ 1. - INTRODUCTION,

For a class of entire functions, which includes e?, we ghall
show the existence of a semi-infinite strip of non-zero width,
symmetric about the non-negative real axis, such that for each
entire function in this class, the function and all its partial sums
have no zeros in this strip. We shall then show the existence
of an infinite strip about the imaginary axis for a class of entire
functions, which includes sin z and cos 2, for which the same
results are true. It will then be shown that the width of the
strips obtained is the best possible result.

§ 2. - PRELIMINARY LEMMAS.

Let f(2) be en entire function with f(z) = 3 a, ¢, where the
k=0
coefficients are real numbers. Then, the n-th partial sum of f (2),
Sn (2)7 ].'S.
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It is easy to- verify that (s, (z+4y)) =y P, (m, y) where

n—1
Po1(w,y) = 2 afry ;(y)
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. 2
Tm, i (Y) =k§0 Crtor+1,iponsr (— 1)Ey2k (2.)

We seek to find the most general conditions on the coeflicients,
ax such that 7, , >0 for all j=0,1,..,n—1; n = 1,2,... We
establigh:

Lemma 1. For r, ;> 0, the coefficients, @, k21, are non-
negative numbers.

Proof. Suppose a,,<0 for m>1. From (2.) above, we have
Frymei = O Opym_y < 0.  Contradiction.

Lemma 2. For y2 >0, "= 0, then for m > 1, a,, =0 implies
Qpyor, =0; k=0,1, ..

Proof.  Suppose a, =0 where m >1. Then from (2,

Tm+2,m-1=—Unt2 Cmio m1¥y?.

From the previous lemma, a,_,> 0. Hence, if 7,4 ,,.,>0,
then we conclude that a,,_,= 0 since y2=0. Extending the

argument now to a,,,, we have the desired result.
Lemma 3. For #, >0 and a, > 0, Qppsp > 0 for m > 1, then

am> 1
Omig) (M + 1) (m+2)°

0§.1/2§_6(

Proof. Consider r,, ., ... From (2.), we have

Ym+2, m-1= Om,m-—l o Ay — O’m+2,m—-1 - Aptg . yzio

Solving for y?, we have the desired result. o
Let j(2) De an entire function with f(2) = 3 (—1)*a,, &**
: k=0
where the coefficients, a,,, are real numbers. Then, the 2n— th
partial sum of f(z), s,, (2), can be written as: ’

2k
Son (@ + 1Y) = (— 1) ag, & Coy, p (iy)F a2-P (3.)
k P=90

Lo
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3

It is easy to verify that

R [Sgn (€ + 1Y)} = .20 Y% 8n,; (2)
Pt
S, () = kggn—;n(“ 1)* ag; yor Coj ok, 95 %% (4.)

The proofs of the following lemmas are similar to those preceding,
For s, ,>0; j=0,1,..,n; n>0, then

Lemma 4.
agy > 0 for all %k >0.

Lemma 6. For x*>0,s,.> 0, then for k>0, ay, =0
implies agr49; =0  for all §>0.
Lemma 6. For s, ;> 0, then if a,, >0, a,, ., >0 for m >0,

A2m 1
then 0<a?2<2 .
€ ST (a,2m+2> (2m + 1) (2m + 2)

Let f(2) be an entire function with f(z2)= 3 (—1)* ag; 221!

k=0
where the coefficients are real numbers. Then the (2n+1) —st
partial sum of f(2), Sy, (2), can be written as:
n
Sons1 (0 + W)= 2 (—1)fagyy TH+10y 4, p (iy)P a¥+1-P (5.
k=0 Pe=g

n
It is easy to verify that & [S,,,;(2+4y)] =23 y" 1, ,(x)
. j=0
tn, j(0) = Zn=T(—1)% ag;iop 11 Oojy 141, 25 2. (6.)

k=0

We have:
Lemma 7. Fort, (z)>0;j=0,1,..,n; n>0, then ag, ., > 0

for k£ > 0.
Lemma 8. For x*> 0,1, ,(v)> 0, then ag,, ,=0,k>0
implies (12}\1.{.29'.;.] = 0; ?._>_O .
Lemma 9. For t, ;> 0, then if ay, >0, ay,,,>0; k>0, then
1

ll2k+1>
asp+3) (2k 4 2) (2k + 3)

O§w2§6(
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§ 3. - MaiN THEOREMS.

Theorem 1. Let ¢ (z) = Zﬁkzkbbe an entire function, not
k=90
identically zero, such that if f, = a; €% where |f,| =, then:

a) ifaq=0,%k>1, then ais=0; §j>0.

b) A, — glb. K m !

am+2> (m +1) (m{— 2)}>0 for am > 0,

Ap4-9 > 0.

c.) ¥ =kb, for all k>0 where 6; is some fixed

angle. Then, there exists a semi-infinite strip, V,, symmetric

about 6 =6,, of width W, where W, =2 V6 A;> 0, such that
g (2) and all its partial sums have no zeros in V..

Proof. Let 2z’ =e*®z . Then g(e™"z2') = f(2') = f (w+iy) is
an entire function with non-negative real coefficients, a,. If
there exists a real number M >0 such that for all y%< M, T,i ()
is non-negative, than by DESCARTES’ rule of signs, P, (2 y),
considered as a polynomial in ®, has no positive real roots;
hence, for «>0,y>< M  we have P,_,(z,y) =0. Then,
I(S,[® +4y)] =0 for >0,y2<M  except when y = 0. But

n
for y =0, 5, (2) reduces to: &, (x) = 3 a, 2*. Since the a; s are

k=0

non-negative real numbers, S, () can have no zeros for z>0.
Hence, for >0, 0<y? < M,s, (2), for all »>1, can have no
zeros in the semi-infinite strip V,, symmetric about the positive
real axis; z e V, implies & (2) > 0,[9 (2)]2 < M. v

The width of V, is clearly 2M "2 By HURWITZ’S theorem, the
zeros of f(z) are limit points of zeros of s, (2). Then, f(2) has
no zeros in V,. : »

Consider all quotients of the form:

( U, > 1
a2/ (m + 1) (m + 2)

Wwhere a,, >0, a,_ ,>0.
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Let A, be the glb. of these quotients. These quotients are
clearly positive numbers, and by b.) of the hypothesis, 4,> 0.
Let M = 64,. ,

To show that 7, ;> 0 for all 0 <y%< /, it will suffice to show
that ' ’

Nia =k_222d+ Yoo+t Ojaopsr,y (—1)ky2 > 0 (7.)

L rn—i—=1
for all d >0, y*< M, for if {_—-——

5 }is odd in (2.), then r, ; is

n—j—1 ‘
a sum of terms of the type N, ,; if ——é— is even, then
¥n; 15 & sum of terms of the type N, plus a final term which
is clearly non-negative for all choices of y.

Expanding (7.), we have:

Y2 (j +4d +1)!
il (4d + 3)1

{ =i+ 40 4+2) ( + 44+ 3) o aass 9° ()

-+ O 4d-+1 (4d -+ 2) (4d + 3) } .

By hypothesis, if a;, 45.; =0, then a;, ,;,5=0 and N, = 0 for
all values of y. If a; 44,1 >0 and o, ,,5,5=0 then N, ;>0
for all values of y. If a;,49,1>0, a;.45,3>0 them N, ;> 0 if

Y2 < (%’+4d+1> (4d+2) (4d+3)
’ @ +4a+s) (J+ 4d+2) (j+ 4d + 3)

But

<a5+4d+1) (4d + 2) (4d + 3) > 6 <%‘+4d+1)
G tag+3) (14 4d+2) (J+4d +3) = \oj14a+3

1
(G+4d +2) (j + 4d + 3)

>64,.

Then, in all cases, for 0 <y*< M, N, ,>0. Hence, with the
results of lemmas 1, 2, and 3, we conclude that Ty,; = 0, Which
completes the proof. ’

The proofs of the following theorems all similar to the proof
given in the previous theorem. ‘

Theorem 2. Let g(z) = 3 (— 1) 5,2 be an entire function,
k=0 ,
not idedentically zero, such that if By, = ay, €'72% where |By = ay,

19
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then:

3‘.) if agz =0 for ]"u_>_0, then Oog 4 95 =0 for 72_0 .

b.) A4, = glb. K 2n ! > 0 for ag >0,

\ag,ﬂ“) (2k+1) (2% +2)
Aop 49 > 0.
¢.) War = 2k0, for k >0 where 0, is some fixed
angle. Then, there exists an infinite strip, V,, symmetric about
6= 0, + 3 of width W, where W, — 234, = 0. such that
g(2) and all its partial sums have no zeros in Vs
Theorem 3. Let g(z)= _;,’O (—1)*Byp 1 2%+ 1 be an entire func-

k=0
tion. not identically zero, such that if Borr1= G951 6 "2k +1 where

jﬂ2k+1}= Ogr1 then:

a.) if agk_,_l:O; k_>‘0, then a2k+27+1=0; jZO.

02541 1 ,
b. = . ~
) A3 glb [<a215+3>(2k T 2) (Zk—{- 3)J >0 for 09 41 O,

Aop 4 3 > 0.

¢) Wopp1 = (2k +1) 6y for k>0 where 0y 18 some
fixed angle. Then, there exists an infinite strip, V3, symmetric
about 6 =0+ x/2 of width W, where W,=2)64,> 0, such that
g (?) and all its partial sums have no zeros in V; except at 2=0,
at which point, g(z) and all its partial sum are zero.

Remarlk: The bounds, 4,, related to the width of the strips,
cannot be increased. We see that j(z)=cos Z; 9(2)=sin z satisfy
the hypothesis of theorems 2 and 3, respectively. We have that

2

Ap=A4;=1 for cosz and sinz . For cosz, §,(2) =1 _,?2_;
— .3

%, (2) has zeros at (Y2, 0), (—7V2,0). For sinz, S4(2) = z—%;

S3(2) has zeros at (0,0), (+16,0), (— V6, 0). But the semi-
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width of the strip, as given by theorem 2, for cosz is V§; the
semi-width for the strip for sinz is /6. Clearly, these strips

cannot be increased in width without including zeros of the ,(2).

§ 4.

We will now show the relationship between the theorems
given in § 3.

Def. If g(2) satisfies the hypothesis of theorem k; k=1, 2, 3
then g(z) € S;; S=8,U8,US,. ‘

Lemma 10. Tt g(2)€ 8, then yg(dz) e S,, where y,6 are
non-zero complex constants.

Proof. Obvious.

Lemma 11. If ¢ (z) € 8, and y is a non-zero complex constant,
then: :

a) y[g@)+g(—2)]e s,
b) v[g@R) —g(—=)le S,

Proof. Obvious.

Lemma 12. Under the operations defined in lemma 11, 8§,
generates N.

Proof.  Suppose g(2) €8, where ¢(z) = 3 (—1)kay22* and

k=0

o0
ay = 0, for convenience. Lét h(z)= X f,2* where
k=0

1.) /32;‘7 = 09y for all k_>_0 .

2.) Bapy1= @k + 1)1
Clearly, & (2) is an entire funection, and h(z)€ S;.
But% [h(2)+h(—2)]=g(2). The method of construction

is similar for g(z)e S,.
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We combine the results of the previous lemmas to obtain
the following:

Theorem 4. Let f(z) satisfy the hypothesis of theorem 1.
Then:

1.) there exists a semi-infinite strip, V., of non-zero width,
symmetric about 6=6, such that f(z) and its partial sums have
no zeros in V,.

2.) there exists an infinite strip, V,, of non-zero width,
symmetric about 0=0,+x/2 such that g(z)zé[f (z)+f(—=)] and
all its partial sums, have no zeros in V,.

3.) there exists an infinite strip, Vg, of non-zero width,
symmetric about 6="60,+ /2 such that & (z)zél-i [f (2)—f(—=)] and

all its partial sums, have no zeros in V,, except at 2=0, at
which point, k() and all its partial sums vanish.

Remark. e° satisfies Theorem 7; hence, there exist infinite
strips for sinz, cosz.




