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Abstract. The application of the Rayleigh-Ritz method for approximating the
eigenvalues and eigenfunctions of linear eigenvalue problems in several dimensions is
investigated. The object is to improve upon known error estimates for the approximate
eigenfunctions. Results for the Galerkin approximation of the eigenfunctions are
developed under varying assumptions on the boundary conditions and domain of
definition of the eigenvalue problem. These results, coupled with a previous result
relating Galerkin and Rayleigh-Ritz approximation of the eigenfunctions, are then
used to obtain improved error estimates for the approximate eigenfunctions in the L2
and uniform norms.

1. Introduction
Our concern here will be to develop high-order error estimates for the Rayleigh-
Ritz approximation of the eigenvalues and eigenfunctions of the linear eigenvalue
problem (cf. (2.1))

(1.1) Nu(x) =L Mu(x), x€L,
subject to the homogeneous boundary conditions ((cf. 2.2))
(1.2) Hu(x) =0, x€L.

For a discussion of some previous work on this problem, see Pierce and Varga [31].
The error estimates developed here for the approximate eigenvalues are generally
not new. However, the corresponding estimates for the approximate esgenfunctions
in the L? and uniform norms constitute a significant improvement over previous
results. In [31], we obtained a general theorem (Theorem 4.2) which shows that
the Rayleigh-Ritz and Galerkin approximations to the eigenfunctions of (1.1)—(1.2)
are generally close in the relevant energy norm. The approach here is to use the
results of Nitsche [27, 28], and Strang and Fix [34], relating to Galerkin approxi-
mation, to obtain the corresponding results for the Rayleigh-Ritz approximation
of eigenfunctions of (1.1)—(1.2).

In Section 2, we summarize the basic theory for the problem (1.1)-(1.2), the
Rayleigh-Ritz method, and the results of [31]. Section 3 deals with the one-
dimensional eigenvalue problem. Error estimates are developed for the Ray-
leigh-Ritz approximation of the eigenvalues and eigenfunctions on subspaces S,’;, »
satisfying a certain approximation theoretic property (cf. § 3). For example the
Lg-splines of Jerome and Varga [22] and the /-splines of Jerome and Pierce [20]

can be used to generate such S}, , spaces.

* This research was supported in part by AEC Grant (11-1)-2075.
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In Section 4, the error estimates for the Rayleigh-Ritz eigenvalues and
eigenfunctions of Section 3 are generalized for a number of different regions and
boundary conditions in RY and for particular finite-dimensional subspaces.

We shall throughout use the letter K to denote a generic constant. The param-
eters upon which K depends will be clear in each case.

2. Basic Results
Let 2 be an open bounded subset of RY, N = 1, with boundary 9£. We consider
the eigenvalue problem (1.1)—(1.2), where 4" and .# are the formally self-adjoint
differential operators
Nu(x)= 3 (=) D*[p, () D*u(x)], €L,
le|<n

AMux)= 3 (—1)D*[q,(x) D*u(x)], xeL,

lajsr

(2.1)

where 0 <7 < n, and where we use the usual multi-index notation. The coefficient
functions ¢, (x) and g, () are assumed to be real-valued functions of class C ().
The homogeneous boundary conditions Z={B;}}_; of (1.2) will consist of n
linearly independent conditions of the form

(2.2) Bju(x)= 2 m;,(x)D*u(x)=0, 1=j=mn, x€L.

la]< 2n—~1

In the case N =1 with £ = (a, b), we shall also allow the more general boundary
conditions of the form

2n
22)  Bju(x)= X {m; D" u(a) +-n;, D" tu(b)} =0, 1=j=2n.
B=1
In addition, we assume in this case that

(2.3) $, (%) and ¢, () do not vanish on [a, b].

For any nonnegative integer s, let W?(2) denote the usual Sobolev space,
with inner product

(u, v),=f{ 2 D*u(x)D*v(x)}dx for all u, veW(Q),
2 |ul=s
and with norm |- |;=(-, -)}, and let |u,, =sup|u(x)| for all # () defined on Q.
xER

Let @ be the linear space of all real-valued functions #(x)€C () satisfying
the boundary conditions of (2.2). We make the following assumptions:

(2.4) (N u, v)g= (1, Nv)g=(u,v)y, forallu,ved,
(2.5) (M, 0)= (1, M)g=(u,v)p, forallu,veD,
(2.6) lulp =K|ulp, and |up=K|ulj, forall ue.

Let H, and Hp denote, respectively, the Hilbert space “completions of 2 with
respect to |||y and |- |p. Then, from (2.6), H yC Hp, and we assume throughout
that

(2.7) bounded sets in H  are precompact in Hp,.
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An eigenvalue of (1.1)—(1.2) is a value of A for which there exists a non-trivial
solution, or eigenfunction, u(x), of (1.1)-(1.2). It is known (Gould [13]) that,
with the assumptions of (2.4)—(2.7), the eigenvalue problem (1.1)—(1.2) has
countably many real eigenvalues 0 <A, <4, =< --- =4,=1,., = ---, having no
finite limit point, and a corresponding sequence of eigenfunctions {f;(x)}?2;, with
f;€H y, such that

(2:8) - N =AM (0, T=1
The eigenfunctions can be chosen to be orthonormal in H, i.e.,

(2.9) (Fo l)p=04; 4,721,

and {f;}32 is complete in Hp,

In addition, when N =1, and £ =(a, ), the assumptions of (2.3)—(2.6) are
sufficient to guarantee that (2.7) is satisfied, and that f; (x) €C*[a, b] for all
j =1, for the more general boundary conditions of (2.2') (cf. Brauer [8] and
Kamke [24, 25]).

The eigenvalues and eigenfunctions of (1.1)—(1.2) can then be characterized
as follows (cf. Collatz [10], Gould [13] and Mikhlin {26]):

(2.10) 7 mln{H H;V weH y, w0, (, 1) p =0, 1<Z<k—1}—]]fan

The Rayleigh-Ritz method for obtaining approximate eigenvalues 4, and approxi-
mate eigenfunctions f, is then defined as follows. Given a finite dimensional
subspace S,; of Hy, of dimension M =Z,

I 5
(2.11) lk_mn{" "1;' WESy, w0, (w,f)p=0,1 <l<k~4}_{[fk||?v.
Now, let j be a fixed positive integer, and {S;;}72, be a sequénce of finite
dimensional subspaces of Hy, with dim S, =M, =7 for all £=1, such that

(2.12) lim inf |f,—w|y=0, 1=Zk=j.

t—>00 wesM

Let 2“ and fj,, be, respectively, the j-th approximate eigenvalue and eigenfunc-
tion of (1.1)—(1.2), obtained by applying the Rayleigh-Ritz method to Sy, £ =1.
Then we have the following convergence result (cf. Ciarlet, Schultz, and Varga
[9], and Schultz [32]).

Theorem 2.1. If assumption (2.12) is satisfied, then Zf,t converges to 4; from
above. Moreover, for all ¢ sufficiently large (say ¢=%;), there exist j functions

~ ;7 . . 7 s
{1, 1}h=1 in Sy, for which X |f, . —f» Ih <1, and
E=1

ké 17,5~ Felie

( ( ka t‘—fkuD)%f

[

(2.13) PRy e for all £ =1,

ll M“
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We now state the two basic results of Pierce and Varga [31]. For a given
function geHy, let g, denote the N-norm projection of g on the subspace Sy,
t=1, e,

(2.14) (g—8,w)y=0 dorall weSy,

Such an element F, always exists and is unique, since Hy is a Hilbert space.
Equivalently, we have that

(2.15) lg:—¢gly = inf Jw—gly
w Ml

We remark that g, can be alternatively viewed as the Galerkin approximation
on Sy, to the solution of the boundary value problem .#"% =./"g, with the boundary
conditions of (1.2). If /‘ denotes the N-norm projection of the eigenfunction f;
on Sy, we then have the following result of [31].

Theorem 2.2. Let {S;};2, satisfy the assumption of (2.12). If 4; is a simple
eigenvalue of (1.1)-(1.2), then there exists a positive integer ¢; and a positive
constant K depending only on j such that

(246) o F =Kl —Fyolp  forall 124,

If 2;is an eigenvalue of multiplicity » 41 of (1.1)-(1.2), let / be any element of
the (v--1)-dimensional subspace of Hp, spanned by {f}iZ. Let {fk it be a
corresponding set of approxnnate eigenfunctions chosen so that (]‘my,, f"’t) D = O s

j=<m,n=j-+» and let ftm Z (f, fk Jp fk, be the D-norm projection of f onto

the (v +1)-dimensional subspace of Sy, spanned by the {fk k. Then, there
exists a positive integer ¢; and a positive constant K, dependlng only on 7 and ¥,
such that

(2.17) 7 —Fly=K|f—7Flp forallt=¢,.

For a proof of Theorem 2.2, and a more detailed discussion of the results of
this section, see Pierce and Varga [31].

Continuing our discussion of basic results, we now specialize to the one-
dimensional eigenvalue problem (1.1)—(1.2), with £ ={(a, 0), and to the more
general boundary conditions of (2.2'). We first make several remarks. In treating
the general boundary conditions of (2.2'), we must distinguish between the so-
called essential and suppressible (or natural) boundary conditions (cf. Collatz [10],
p- 4). We write the boundary conditions of (2.2") in the following form:

(@) By () =nil{“i,le%(“) +B;, Dup)} =0, 1=j<k (if £==0),
(2.18) - |
(i) B; (u) Z 2y Du(a) +96, , D'u(d)} =0, 1=j <on—k (if k==2n).
1=0

The essential boundary conditions Bf (1) consist of the maximum set of linearly
independent boundary conditions involving only derivatives of #(x) of order at
most # —1, evaluated at @ and b, which can be obtained by linear combinations
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of the boundary conditions of (2.2'). Let W [a, b] denote the subspace of all func-
tions # in W' [a, b], satisfying the essential boundary conditions of (2.18(i)).
From the classical result of Kamke (cf. [25]), the inner products (,v)y and
(4, v)p can, from the assumptions of (2.4) and (2.5), be written in the form

(219) (w,9)y :f{iéogbi(x)D"u(x)Div(x)} dx+Ny(u,v), u,veD,

and
b

(2.20) (#,v)p=f {,’goqi(x) Dl (x) D"v(x)} dx+Dy(u,v) u,v€9,

a

where Ny (u, v) and Dg(u, v) are bilinear forms in the derivatives of % and v of
order at most #—1, evaluated at x=a and x=25. It then follows from the
smoothness of the coefficients in (2.1) and Sobolev’s Imbedding Theorem in one-
dimension (cf. Yosida [37], p.174), that there exists a positive constant K
for which

(2.21) )y =K|u|, forallue.

Consequently, it follows that (2.19), (2.20), and (2.21) hold also for all u, ve Wy [a, b],
and thus,

(2.22) DWW [a, b]C Hy,.

Next, as a consequence of the assumption (2.3), the eigenfunctions /; of (2.8)
satisfy f;,€ 2 C W' [a, b], § =1, and we can rewrite (2.10) as follows:

(2.23) Zk=min{~:;%ll—%: weWg[a,b], w=E0, (w,f)p=0, 1§l§k——1} =[x

We shall thus apply the Rayleigh-Ritz method to subspaces {Sy;,}52, of W [a, b]
which satisfy the assumption of (2.12).
We make use later of one or both of the following assumptions: There exist

positive constants K such that
(2.24) lul,<K|u|y forallue®

(i-e., A is elliptic, and with (2.21), Wy [a, b]=Hy and || - |, and | - |y are equiv-
alent norms on Hy), and/or
(2.25) fu|p <K|u|, foralluc2.

As examples of eigenvalue problems for which (2.24)—(2.25) are valid, consider
first:
(2.26) Dy (x) = —AD*u(x), a<x<<b,

with the boundary conditions
(2.27) u(a) =Du(a) =u(b) =Du(d) =0.

The assumptions of (2.4) and (2.5) are readily verified in this case. The coi'lditions
of (2.6) follows from the Rayleigh-Ritz inequality (cf. Hardy, Littlewood and
Polya [15], p.184), and the boundary conditions of (2.27). In this case, all
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boundary conditions of (2.27) are essential, and H =W [a, b]. Moreover, it then
follows that there exists a positive constant K such that

(2.28) |l =<K|u|y for all ue W2 [a, b].
As another example, take the second order problem
(229)  —D{py () Du()}+po(x)u(x) =Agy(Mu(x), a<x<b,
where p,€C[a, b], Po, 90€C%[a, b], and p,(x) and g4(x) are positive on [a, b],
with the boundary conditions
(i) oqu(a) —ayDu(a) =0,
(i)  pyu(b) +pfoDu(b) =0,

where the constants o, o, £, and B, are non-negative, with oy +oy >0 and
1 +B2>0. This problem has been considered in detail in Birkhoff, de Boor,
Swartz and Wendroff [4]. The assumptions of (2.4) and (2.5) are easily verified.
By a suitable modification of (2.29), we may assume without essential loss of
generality that py(x) >0 on [a, b], and the assumption of (2.6) then follows
directly. Moreover, it is easily seen that there exists a positive constant K such
that

(2.31) |ul, <K|u|y for all we W [a, b].

(2.30)

The eigenvalues of (2.29)(2.30) are all simple, and under the stronger assumption
that $,€C3[a, b] and p,, g,€C2[a, b], then all eigenfunctions f; are in C4[a, b],
7 =1, a fact which will be used later.

3. Error Estimates—One Dimensional Case

We wish to obtain error estimates for the Rayleigh-Ritz approximations to
the eigenvalues and eigenfunctions of the linear eigenvalue problem (1.1)~(1.2) in
one dimension on subspaces of functions satisfying a rather general approxima-
tion-theoretic property. Let SZJ, be a finite-dimensional subspace of W¢ [a, b],
depending on a parameter %, with 0 <k =1, and positive integers p and #, with
P =2, such that, for any fe W¢ [a, b] WY [a, b], there exists f GS,’:, #» such that

(3.1) I/ —F <KW |f],, forallo<k=n,

where K is independent of / and 4. We restrict attention to the case p=2n
because the eigenfunctions f; are all elements of C**[a, b]. Later in {4.1) for
higher-dimensional problems, we assume only $ ># because of lack of regularity
in the eigenfunctions.

We remark that such subspaces SZ,? can be easily generated using spline
functions of various types (cf. Lg-splines of Jerome and Varga [22], and (non-
singular) A splines of Jerome and Pierce [20], for example). In fact, let S be any
subspace of interpolating spline functions in Wy [a, b] such that, for any
€W [a, b], the interpolation f; of fin S satisties D' (f—7) (a) =0and D (f— ) () =0,
for all 0 =7 <% —1. Then let S}, » be the subspace of S satisfying the essential
boundary conditions of (2.18(i)). It then follows that for every jeW2[a, b],



Higher Order Convergence Results for the Rayleigh-Ritz Method 161

7 €Sh 5, and the estimate of (3.1) follows directly from estimates of If =7 lle

obtained in [20] and [22], and extended in Hedstrom and Varga [17] to larger

classes of integers p, where / is the maximum mesh size of the partition associated

with the spline space. The above conditions on S can be weakened to the require-

ment that, for all feW;*(a, b], } interpolate f in the essential boundary conditions

of (2.18(i)), provided f —7 satisfies a ““second integral relation” (cf. [20], [22]).
Let f*€S! , be such that

(3.2) If =7 |y =inf{|f —g|y:g€Sh ,}.

In order to obtain error estimates for the Rayleigh-Ritz approximation of the
eigenvalues and eigenfunctions of (1.4) on S} p» it follows from Theorem 2.2 that
we first need estimates of f —f*. To obtain such estimates, we employ the methods
of Nitsche [27, 28]. The following theorem is a slight generalization of the work
of Nitsche to general boundary conditions. The proof is given partially for this
reason and partially for the sake of completeness. In § 4, we shall use extensions

of these results to problems in higher dimensions.

Theorem 3.1. Let feWf [a, b] "W [a, b], where p =2n. With the assumptions
of (2.3)—(2.6) and (3.1), then

(3.3) 17 =7l = K 22|,

and

(3.4) IF =7y =Er="|f|,,

where K is independent of f and 4. If, in addition (2.24) is satisfied, then
(3-5) I =7l =xr"fl, o=<i<n,

and

(3.6) 1D =) ey S KR4, 0<I<n—1.

Proof. We first prove (3.4). Let f”eSﬁ,P satisfy (3.1). Since, by hypothesis,
teWfa, b1 W [a, b], we have from (3.2), (2.21), and (3.1) that

lf=Flw It = Ply < K| =T < K|,
which proves (3.4). Next, by definition,
(f~F" w)y=0 forallweS] ,.
Let g then be the solution of the boundary value problem
(3-7) Ne={—F", Bg=o,

with B; defined as in (2.2'). Because of the assumed smoothness of the coefficients
in (2.1) and the assumption of (2.6), the boundary value problem (3.7) has an
associated Green'’s function (cf. Ince [19], p. 254), and g, the solution of (3.7), is
consequently an element of ;> [a, b]. Now, let g* be the projection of g onto
the space S}, , in the norm |- |ly. Thus,

=T en=0—T"g—n
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and since (f —7*, g)y = (f —F*, ¥ g) =] —7*|2, we have that

(3.8) I =Fl=G—7" e ==~y lg —2'|n-
Since g€ Wy" [a, b1 "W [a, b], it follows from (3.4) with p =2 that
(3.9) lg — &' lv = K" |g]en-

But, because the problem of (3.7) has an associated Green’s function and because
of the assumption of (2.3), it can easily be shown that

(3-10) lelow = K| elo =K [ —7* |-
Combining (3.8)—(3.10) and (3.1), we have that
(3.11) lF =P R=ER |- 17— 7o

and the result of (3.3) follows.

To obtain the results of (3.5) and (3.6), we use the theory of interpolation
spaces (cf. [17]). For, from the assumption of (2.24), (3.3), and (3.4) give us that

(3-12) [1=7"b=Ew|fl, and [f—7", <K#~"|f],.

Hence, the first inequality of (3.12) states that the mapping 7, defined by
Tf=f—7" is a bounded linear transformation from Wy [a, 8] to L,[a, b], with
norm at most M, = K h?, while the second inequality gives T as a bounded linear
transformation from WY [a, b] to Wy [a, b], with norm at most M, =Kh~", Thus,
from the theory of interpolation spaces (cf. [17], Theorem 2.2), T is a bounded .
linear transformation from Wy [a, b] to W} [a, 6], 0=k =wn, with norm at most
My~ Mk — K 1#—* ) so that

(3.13) |T7 =1 =l = K171,

which is the desired result of (3.5). The final result of (3.6) similarly follows from
the known continuous embedding (cf. [17], Theorem 2.3, Eq. (2.20)) of the
Besov space B} (a, b]=(L,[a, b], W5 [a, b)), ; in L [a, b], ie.,

@), o =K (@], - Jwl)t  for all we W [a, b]. Q.E.D.

We now consider the application of the Rayleigh-Ritz method to subspaces
Sy » of W' [a, b] satisfying (3.1). Let {A,}, be a sequence of real numbers, with
0<%, <1 for all £=1, and such that tl_l)ngo h, =0, and, for each ¢=1, let SZj?
satisfy (3.1). We let {Sy,}i2; ={S¥ ,}=,, and for a fixed integer j >0, we assume
dim (S} ,)=j. In our previous notation, we let =T [ =1 and =i,
Since f,.ec“ [a, ], it follows from (3.4) that condition (2.12) is satisfied for the
sequence of subspaces {S} 1}, and the results of Theorems 2.1 and 2.2 are
therefore applicable. To avoid undue notation, we eliminate the dependence upon
¢, and state the following convergence theorems for subspaces Sf‘w of W¢a, b]
satisfying (3.1) with % sufficiently small. :

Theorem 3.2. With the assumptions of (2.3)-(2.6), let A; and £;(x) be, respec-
tively, the j-th eigenvalue and eigenfunction of (1.1)-(1.2), and assume that A is
a simple eigenvalue, and that /€ W{ [4, b] with p=2n. If Sk » is a subspace of
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WE [a, b] of dimension at least 7, which satisfies (3.1), let 2.;‘ and f,;-‘ (x) denote,
respectively, the j-th approximate eigenvalue and eigenfunction of (1.1)—(1.2)
obtained from the Rayleigh-Ritz method applied to Sk ,. Then, for & sufficiently
small, there exist constants K, depending only on 4, such that

(3.14) 0=} — 2, KR,
and

(3.15) Vs =1 Iy S K77 ]
If =01in (2.1), then

(3.16) It =i b =K |f;].

Finally, if both (2.24) and (2.25) are satisfied, then there exist constants K,
depending only on ; and 7, such that

(3.17) =L =KW,  pr=min(p—r, p—1), 0=i<n,
and
(3-18) “Dl(fj_f]}!)”Lw[a,b]gKh’gl”ff"p’ gy=min(p—7»,p—1—3), 0=i<n—1.

Proof. The result of (3.14) follows directly from Theorem 2.1, (3.4), and the
inequality of (2.6). To prove (3.15), we have from the triangle inequality that

Ui = =1 =1l + 177 — 7 -
But, from Theorem 2.2, and (2.6),
17} =y =K —F o =K1 = lns

and applying (3.4) we obtain (3.15). Now, from the triangle inequality,

1= Al =Mt =l +15 — 17l
From (2.6) and (2.16) of Theorem 2.2 with » =0,

17F =1l = KIF —Fi v = K =T

Thus, (3.16) follows directly from (3.3) of Theorem 3.1. To prove (3.17), we have
from the triangle inequality that

1 =1l =t =B+ 07— 17
By assumptions (2.24) and (2.25), and (2.16) of Theorem 2.2,

17 =Bh=1F =1L = KI5 —if s <Kl = o =K 11,

The result of (3.17) then follows from (3.5) of Theorem 3.1. The result of (3.18)
follows similarly, using Sobolev’s inequality in one dimension, and (3.6) of
Theorem 3.1. Q.E.D.

The convergence rates obtained in Theorem 3.2 are essentially unchanged
if 2; is a multiple eigenvalue of (1.1)-(1.2). We state the following without proof.

12 Numer. Math., Bd, 19
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Theorem 3.3. With the assumptions of (2.3)—(2.6), suppose that 4; is an
eigenvalue of (1.1)-(1.2) of multiplicity » 41, v =1. Let {f,(x)}i%" be a cor-
responding set of eigenfunctions, chosen orthonormal in the D—norm and assume
that f,eWf [a, b], j <k <j-+», with p=2n. Let S* wp D€ a finite dimensional
subspace of Wg'[a, b] of dimension at least j +», satisfying (3.1). Let {2} };1’;
the corresponding set of approximate eigenvalues and {fi}}" a correspondmg
set of approximate eigenfunctions, orthonormal in the D-norm, obtained by
applying the Rayleigh-Ritz method to S} ,. Let f(x) be any element of the
(v—H) dlmensmnal subspace of & spanned by the {f,(x)}it’, with ||, =1 and

let f Z (f, ) pft. Then, for all & sufficiently small, there exists a positive
constant K such that
(3.19) 0=H—A KR, j<k<j+»

Moreover, the error estimates (3.15)-(3.18) of Theorem 3.2 hold analogously
for f —f".

The error estimates developed in Theorems 3.2 and 3.3 for the approximate
etgenvalues are generally not new. For particular subspaces S ,, such results
have previously been obtained by Wendroff [36], Birkhoff, de Boor, Swartz and
Wendroff [4], and Ciarlet, Schultz and Varga [9]. As a consequence of the explicit
calculations of Birkhoff and de Boor [3] for the example of (2.29)—(2.30), for the
case of cubic spline functions, these results appear to be best possible with respect
to the exponent of 4.

The corresponding estimates for the approximate eigenfunctions, however,
give a rather significant improvement of the results of [4] and [9]. For example,
if » =0, the estimates of [9] for ||f;—/],, with j,€W;™[a, b], and subspaces of
type S} ,,, are improved here from @ (h*"~") to @ (h*™). These results are moreover
essentially independent of the assumption made in both [4] and [9] that A, is a
simple eigenvalue, and that 1, <, <--- <4;. Finally, it is clear from approxi—
mation-theoretic arguments that these estimates are best possible with respect to
the exponent of 4.

In case >0, the L%norm estimates of Theorems 3.2 and 3.3 appear to be
best possible, but we have not been able to prove this. The uniform norm estimates
of Theorems 3.2 and 3.3 are also best possible for f;(x) in class W [a, b]. With
the stronger assumption that f,€C? (4, b], one would expect to be able to prove
that the exponent ¢, of (3.18) could be increased to g¢,=min (p —r, p —I),
0=/=n—1. Such a result follows immediately from the proof of Theorem 3.2,
provided one has an inequality of the following form:

(3.20) 1D —T") oo par) S KW, 0=l=<n—1, forall feC?[a,b),

where K depends on  and f, but is independent of %, and 7* is the N-norm projec-
tion of f onto SZ,P. While such results, as in (3.20), are not available in general,
the inequality is known to be valid in certain cases. If the spaces S}: , are chosen to
be A-spline spaces, with A a differential operator chosen in relation to the operator
A of (1.1), and provided that, an inequality of the form

(3.21)  |D'(F—F)ir@n =KW, 0=<i=<n—1, forall feC?[a,b]
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is valid, for an interpolation 765’,:? of f, then (3.20) follows.f%We remark that the
inequality (3.21) has recently been shown to hold for subspaces of polynomial
splines with uniform mesh spacing, and Hermite interpolating L-splines (cf. Swartz
and Varga [35]).

To be more precise, suppose the operator 4" is of the following form,
(3.22) Nu(x) =Au(x) +Ru(x), forall ueC*[a,b],

with A a formally self-adjoint, non-singular differential operator, and R a dif-

ferential operator of form

(3.23) Ru(x)= Y (—1)D(0;;(x)Diu(x)), for all u(x)eC*[a,b],
0=i+j<n

with a; ; (%) =0, ;(x) and o, ;€C™*¢?[q, 3], 0 =i +-j =n. Then, letting Sk 5, be

a subspace of /-spines, the validity of inequality (3.21) implies that of (3.20),

for p =2n. This results from the fact that the interpolation of f and the N-norm

projection of fin S% ,,, are very close in the N-norm. The proof is a straightforward

generalization of the results of Perrin, Price, and Varga [29].

If the eigenfunctions f;(x) of (1.1)-(1.2) are smoother, ie., 1;€C? [a, b], with
p =2n-2g, q a positive integer, the inequality of (3.20) can be again shown to
be valid in certain cases, when S% , is chosen properly. The proof is based on a
construction of Hulme [18], and Perrin, Price and Varga [29]. One defines an
“interpolation” of f; which again can be shown to be extremely close to the
N-norm projection of ;. Important special cases in which (3.20) is valid are when
A=D%, in (3.22), and the S, are chosen to be natural polynomial splines or
piecewise-polynomial Hermite spaces of order 2# -+2¢, on a uniform mesh.

As an application of these results, consider the example of (2.29)-(2.30).
Here #n =1, and # =0, and the assumption of (2.24) is satisfied. If the eigen-
functions of (2.20)—(2.30) are of class C*[a, b], then taking A =D? and Shato
be subspaces of cubic polynomial splines, or piecewise-cubic Hermite polynomials
on a uniform mesh, we obtain (cf. Pierce [30]) that

I — e an =00, I=0,

as conjectured in [4]. If the eigenfunctions, f;, of (2.20)—(2.30) are smoother, e.g.,
if fj-ECZ'” [a, b], then using subspaces of polynomial splines or piecewise Hermite
polynomials of degree 2m —1, on a uniform mesh, we have that

[ =1 e tain = O (™).

For the example of (2.26)—(2.27), » =2 and » =1, and the associated eigen-
functions f; are in C*[a, b]. Therefore, using subspaces of polynomial splines or
piecewise Hermite polynomials of degree 2# —1 with m =2 on a uniform mesh,
we have that

“Dl(fj_f;;!) Iz 12,1 =0H™"), 1=0,1.

4. Error Estimates — Multidimensional Case

The arguments made in Theorems 3.2 and 3.3 carry over easily to multi-
dimensional problems. That is, based upon the results of Theorem 2.2, known

12%



166 J. G. Pierce and R. S. Varga:

error estimates for Galerkin approximation can be used directly to obtain improved
error estimates for the Rayleigh-Ritz approximation of the eigenfunctions of
(1.1)-(1.2).

We shall consider two classes of problems (1.1)—(1.2) with varying assumptions
on the region £2, and the boundary conditions of (2.2):

I. Q is an arbitrary bounded open subset in RY, and the boundary conditions
of (2.2) are all natural or suppressible, i.e.,

D*u(x) =0, x€0Q, foralln=<|a|=2n-—1.

IT. £ is a rectangular parallelopiped, and the boundary conditions of (2.2) are
all essential, i.e.,

D*u(x) =0, x€0f, forallo=|a|=n—1.

We shall make use of the error estimates of Schultz [32], and Strang and Fix [34]
for Galerkin approximations in both cases.

We assume in both cases above that the conditions of (2.4)—(2.6) and (2.24)-
(2.25) are all satisfied. Since in both cases,

(u,v)y= 2 {fgba (x)D“u(x)D“v(x)dx}, UED,
la]<n @
it follows from (2.24) and the assumption that p,eC!* (Q), that ||y and |- [.
are equivalent norms on H .

I. In this case, H y =W;'(£2), i.e., the elements of H y need satisfy no boundary
conditions. In analogy with §3, let S} » be a finite-dimensional subspace of
W (L), depending on a parameter A, with 0 <<% <1, and positive integers p and #,
with $ >, such that for any feWy (Q), there exists an 7651‘,,1, for which

(4.1) It =7l = K="t

. forall 0=k <,

where K is independent of f and 4. Based upon an argument of Schultz, Strang
and Fix [34] have shown that the N-norm or Galerkin projection f* of f on S} ,,
defined by

(4.2) (f—7", w)y=0, forallweS:,,
then satisfies the following inequalities:
4.3) =7 <K#r|f|,, wherec=min(p—Fk 2(p—n)), O0=k=n.

Using (4.3) as in the proof of Theorem 3.2, it follows easily that the Rayleigh-
Ritz approximate eigenfunction ]‘;‘ in SZ,P of the j-th eigenfunction, f;, satisfies

@4) N —=nh=Knm|f

l, Ti=min(p—7r,p—12(p—mn)), forall0<i=<wn,

for % sufficiently small. Similarly, using (4.1), it follows that.the eigenvalue error
estimates for S}, , are still of the form (cf. (3.14))

(4.5) ; 0= A — 4 < KR,
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We remark that subspaces S}, of W' () satisfying the approximation-
theoretic estimates of (4.1) can be explicitly constructed from the methods
described in Strang and Fix [34], and Bramble and Hilbert [7]. In addition, as
mentioned in [34], the estimates of (4.4)-(4.5) are also valid for eigenvalue
problems defined in the unit cube of RY, which can be extended periodically over
all of RY by means of periodic boundary conditions in (2.2).

In this periodic case, when 4" and .# are differential operators with constant
coefficients, Strang and Fix [34], using methods of Fourier analysis, have proved
the stronger result:

(4.6) ==K\, o0=l=mn.

From approximation-theoretic arguments, this result is best possible with respect
to the exponent of 4. However, the result of (4.6) is not valid in the nonconstant
coefficient case. More precisely, Strang and Fix have shown in this case that the
result of (4.3) for Galerkin approximation is best possible with respect to the
exponent of 4. It then follows directly from Theorem 2.2, that the estimate of
(4.4) is best possible in the case » =0. For #>>0, it appears that the estimate of
(4.4) is best possible with respect to the exponent of / (cf. Hald and Widlund [14]).

I1. In case II, Hy D W2 (), where Wy () is defined to be the closure in |- |,
of all infinitely differentiable functions with compact support in £. We require

that any eigenfunction of (1.1)—(1.2) be an element of Wy (£2). The major practical
difficulty is in finding finite-dimensional subspaces of Wy (Q) for arbitrary 2
satisfying an approximation-theoretic property similar to (4.1).

With Q a rectangular parallelopiped in RY, finite dimensional subspaces Sﬁ,p

of W () satisfying (4.1) have been constructed by Schultz [32] by means of
tensor products of one-dimensional spline functions. An extension of Schultz’s
argument (as presented in Strang and Fix [34]) can then be used to show that
the error estimates of (4.3), and thus of (4.4) and (4.5) are again valid.

We remark that, when £ is a rectangular parallelopiped, the results for
cases I and II can be combined so that boundary conditions of essential type can
be specified on certain faces of 2, while boundary conditions of natural type are
specified on the remaining faces of 2, i.e., the boundary conditions of I and II can
be mixed on 042.

Finally, when £ is a bounded open subset of RY which is contained in a
N

rectangular parallelopiped, i.e., 2> X (a;,5,), one can generate finite-dimensional
i=1

subspaces of Vonn (Q) in the following_vvay due to Harrick [16] and Schultz [32].

Assume that there exists a function §€C*(£2), with 0(x) >0 for all x€£2 and
N
> |D;0(%)|#0 for all xR (where D;=0[d%,;), and such that Q2 ={xeRN:

i=1

N

6(x) =0}. Then, the restriction to 2 of (0(x))"g(x) for any geW*( X (a;, b)) is
. N =1

an element of Wy (). In particular, if g€Wy*( X (a;, b;)) is a tensor product of

i=1
one-dimensional spline functions, the resulting collection, say Sk, is a finite-
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dimensional subspace of ﬁ’z” (£). In this spline case, Schultz [32] has shown that
the Galerkin estimate 7* of f in S% , satisfies, for p =24,

4.7) If =1, = Knt =],

provided that felp (Q)mﬁ/z” (). The above Galerkin estimate, however, does
not lead to improved eigenfunction error bounds, in contrast with cases I and II
of this section, and the one-dimensional theory of § 3. It remains an open question
if the Galerkin error estimates of (4.7) are best possible.
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