ALGEBRA QUALIFYING EXAM PROBLEMS
RING THEORY

Kent State University
Department of Mathematical Sciences

Compiled and Maintained by
Donald L. White

Version: August 22, 2022
CONTENTS

RING THEORY

General Ring Theory ... 1
Prime, Maximal, and Primary Ideals ... 4
Commutative Rings ... 6
Domains ... 8
Polynomial Rings ... 9
Non-commutative Rings .. 10
Local Rings, Localization, Rings of Fractions 11
Chains and Chain Conditions .. 12
RING THEORY

General Ring Theory

1. Give an example of each of the following.
 (a) An irreducible polynomial of degree 3 in $\mathbb{Z}_3[x]$.
 (b) A polynomial in $\mathbb{Z}[x]$ that is not irreducible in $\mathbb{Z}[x]$ but is irreducible in $\mathbb{Q}[x]$.
 (c) A non-commutative ring of characteristic p, p a prime.
 (d) A ring with exactly 6 invertible elements.
 (e) An infinite non-commutative ring with only finitely many ideals.
 (f) An infinite non-commutative ring with non-zero characteristic.
 (g) An integral domain which is not a unique factorization domain.
 (h) A unique factorization domain that is not a principal ideal domain.
 (i) A principal ideal domain that is not a Euclidean domain.
 (j) A Euclidean domain other than the ring of integers or a field.
 (k) A finite non-commutative ring.
 (l) A commutative ring with a sequence $\{P_n\}_{n=1}^\infty$ of prime ideals such that P_n is properly contained in P_{n+1} for all n.
 (m) A non-zero prime ideal of a commutative ring that is not a maximal ideal.
 (n) An irreducible element of a commutative ring that is not a prime element.
 (o) An irreducible element of an integral domain that is not a prime element.
 (p) A commutative ring that has exactly one maximal ideal and is not a field.
 (q) A non-commutative ring with exactly two maximal ideals.

2. (a) How many units does the ring $\mathbb{Z}/60\mathbb{Z}$ have? Explain your answer.
 (b) How many ideals does the ring $\mathbb{Z}/60\mathbb{Z}$ have? Explain your answer.

3. How many ideals does the ring $\mathbb{Z}/90\mathbb{Z}$ have? Explain your answer.

4. Denote the set of invertible elements of the ring \mathbb{Z}_n by U_n.
 Answer the following for $n = 18, n = 20, n = 24$.
 (a) List all the elements of U_n.
 (b) Is U_n a cyclic group under multiplication? Justify your answer.

5. Find all positive integers n having the property that the group of units of $\mathbb{Z}/n\mathbb{Z}$ is an elementary abelian 2-group.

6. Let $U(R)$ denote the group of units of a ring R. Prove that if m divides n, then the natural ring homomorphism $\mathbb{Z}_n \rightarrow \mathbb{Z}_m$ maps $U(\mathbb{Z}_n)$ onto $U(\mathbb{Z}_m)$.
 Give an example that shows that $U(R)$ does not have to map onto $U(S)$ under a surjective ring homomorphism $R \rightarrow S$.

7. If p is a prime satisfying $p \equiv 1 \pmod{4}$, then p is a sum of two squares.

8. If (\cdot) denotes the Legendre symbol, prove Euler’s Criterion: if p is a prime and a is any integer relatively prime to p, then $a^{(p-1)/2} \equiv \left(\frac{a}{p} \right) \pmod{p}$.
9. Let R_1 and R_2 be commutative rings with identities and let $R = R_1 \times R_2$. Show that every ideal I of R is of the form $I = I_1 \times I_2$ with I_i an ideal of R_i for $i = 1, 2$.

10. Show that a non-zero ring R in which $x^2 = x$ for all $x \in R$ is of characteristic 2 and is commutative.

11. Let R be a finite commutative ring with more than one element and no zero-divisors. Show that R is a field.

12. Determine for which integers n the ring $\mathbb{Z}/n\mathbb{Z}$ is a direct sum of fields. Prove your answer.

13. Let R be a subring of a field F such that for each x in F either $x \in R$ or $x^{-1} \in R$. Prove that if I and J are two ideals of R, then either $I \subseteq J$ or $J \subseteq I$.

14. The Jacobson Radical $J(R)$ of a ring R is defined to be the intersection of all maximal ideals of R.

Let R be a commutative ring with 1 and let $x \in R$. Show that $x \in J(R)$ if and only if $1 - xy$ is a unit for all y in R.

15. Let R be any ring with identity, and n any positive integer. If $M_n(R)$ denotes the ring of $n \times n$ matrices with entries in R, prove that $M_n(I)$ is an ideal of $M_n(R)$ whenever I is an ideal of R, and that every ideal of $M_n(R)$ has this form.

16. Let m, n be positive integers such that m divides n. Then the natural map $\varphi : \mathbb{Z}_m \to \mathbb{Z}_m$ given by $a + (n) \mapsto a + (m)$ is a surjective ring homomorphism. If U_n, U_m are the units of \mathbb{Z}_n and \mathbb{Z}_m, respectively, show that $\varphi : U_n \to U_m$ is a surjective group homomorphism.

17. Let R be a ring with ideals A and B. Let $R/A \times R/B$ be the ring with coordinate-wise addition and multiplication. Show the following.
 (a) The map $R \to R/A \times R/B$ given by $r \mapsto (r + A, r + B)$ is a ring homomorphism.
 (b) The homomorphism in part (a) is surjective if and only if $A + B = R$.

18. Let m and n be relatively prime integers.
 (a) Show that if c and d are any integers, then there is an integer x such that $x \equiv c \pmod{m}$ and $x \equiv d \pmod{n}$.
 (b) Show that \mathbb{Z}_{mn} and $\mathbb{Z}_m \times \mathbb{Z}_n$ are isomorphic as rings.

19. Let R be a commutative ring with 1 and let I and J be ideals of R such that $I + J = R$. Show that $I \cdot J = I \cap J$.

20. [NEW]
 Give an example of a commutative ring R and ideals I and J in which $I \cdot J \neq I \cap J$.
 Also, prove that if $I + J = R$ then necessarily $I \cdot J = I \cap J$.

21. Let R be a commutative ring with 1 and let I and J be ideals of R such that $I + J = R$. Show that $R/(I \cap J) \cong R/I \oplus R/J$.

22. Let R be a commutative ring with identity and let I_1, I_2, \ldots, I_n be pairwise co-maximal ideals of R (i.e., $I_i + I_j = R$ if $i \neq j$). Show that $I_i + \bigcap_{j \neq i} I_j = R$ for all i.

2
23. Let R be a commutative ring, not necessarily with identity, and assume there is some fixed positive integer n such that $nr = 0$ for all $r \in R$. Prove that R embeds in a ring S with identity so that R is an ideal of S and $S/R \cong \mathbb{Z}/n\mathbb{Z}$.

24. Let R be a ring with identity 1 and $a, b \in R$ such that $ab = 1$. Denote $X = \{x \in R \mid ax = 1\}$.

(a) If $x \in X$, then $b + (1 - xa) \in X$.

(b) If $\varphi : X \to X$ is the mapping given by $\varphi(x) = b + (1 - xa)$, then φ is one-to-one.

(c) If X has more than one element, then X is an infinite set.

25. Let R be a commutative ring with identity and define $U_2(R) = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in R \right\}$.

Prove that every R-automorphism of $U_2(R)$ is inner.

26. Let R be the field of real numbers and let F be the set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ -3b & a \end{bmatrix}$, where $a, b \in \mathbb{R}$. Show that F is a field under the usual matrix operations.

27. Let R be the ring of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ where a and b are real numbers.

Prove that R is isomorphic to \mathbb{C}, the field of complex numbers.

28. Let p be a prime and let R be the ring of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ pb & a \end{bmatrix}$, where $a, b \in \mathbb{Z}$. Prove that R is isomorphic to $\mathbb{Z}[\sqrt{p}]$.

29. Let p be a prime and F_p the set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$, where $a, b \in \mathbb{Z}_p$.

(a) Show that F_p is a commutative ring with identity.

(b) Show that F_7 is a field.

(c) Show that F_{13} is not a field.

30. Let $I \subseteq J$ be right ideals of a ring R such that $J/I \cong R$ as right R-modules. Prove that there exists a right ideal K such that $I \cap K = (0)$ and $I + K = J$.

31. A ring R is called simple if $R^2 \neq 0$ and 0 and R are its only ideals. Show that the center of a simple ring is 0 or a field.

32. Give an example of a field F and a one-to-one ring homomorphism $\varphi : F \to F$ which is not onto. Verify your example.

33. Let D be an integral domain and let $D[x_1, x_2, \ldots, x_n]$ be the polynomial ring over D in the n indeterminates x_1, x_2, \ldots, x_n. Let

$$V = \begin{bmatrix} x_1^{n-1} & \cdots & x_1^2 & x_1 & 1 \\
 x_2^{n-1} & \cdots & x_2^2 & x_2 & 1 \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 x_n^{n-1} & \cdots & x_n^2 & x_n & 1 \end{bmatrix}.$$

Prove that the determinant of V is $\prod_{1 \leq i < j \leq n} (x_i - x_j)$.

34. Let $R = C[0,1]$ be the set of all continuous real-valued functions on $[0, 1]$. Define addition and multiplication on R as follows. For $f, g \in R$ and $x \in [0, 1]$,

$$(f + g)(x) = f(x) + g(x) \text{ and } (fg)(x) = f(x)g(x).$$

(a) Show that R with these operations is a commutative ring with identity.
(b) Find the units of R.
(c) If $f \in R$ and $f^2 = f$, then $f = 0_R$ or $f = 1_R$.
(d) If n is a positive integer and $f \in R$ is such that $f^n = 0_R$, then $f = 0_R$.

35. Let S be the ring of all bounded, continuous functions $f : \mathbb{R} \to \mathbb{R}$, where \mathbb{R} is the set of real numbers. Let I be the set of functions f in S such that $f(t) \to 0$ as $|t| \to \infty$.

(a) Show that I is an ideal of S.
(b) Suppose $x \in S$ is such that there is an $i \in I$ with $ix = x$. Show that $x(t) = 0$ for all sufficiently large $|t|$.

36. Let \mathbb{Q} be the field of rational numbers and $D = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}$.

(a) Show that D is a subring of the field of real numbers.
(b) Show that D is a principal ideal domain.
(c) Show that $\sqrt{3}$ is not an element of D.

37. Show that if p is a prime such that $p \equiv 1 \pmod{4}$, then $x^2 + 1$ is not irreducible in $\mathbb{Z}_p[x]$.

38. Show that if p is a prime such that $p \equiv 3 \pmod{4}$, then $x^2 + 1$ is irreducible in $\mathbb{Z}_p[x]$.

39. Show that if p is a prime such that $p \equiv 1 \pmod{6}$, then $x^3 + 1$ splits in $\mathbb{Z}_p[x]$.

Prime, Maximal, and Primary Ideals

40. Let R be a non-zero commutative ring with 1. Show that an ideal M of R is maximal if and only if R/M is a field.

41. Let R be a commutative ring with 1. Show that an ideal P of R is prime if and only if R/P is an integral domain.

42. (a) Let R be a commutative ring with 1. Show that if M is a maximal ideal of R then M is a prime ideal of R.

 (b) Give an example of a non-zero prime ideal in a ring R that is not a maximal ideal.

43. Let R be a non-zero ring with identity. Show that every proper ideal of R is contained in a maximal ideal.

44. Let R be a commutative ring with 1 and P a prime ideal of R. Show that if I and J are ideals of R such that $I \cap J \subseteq P$ and $J \not\subseteq P$, then $I \subseteq P$.

45. Let $M_1 \neq M_2$ be two maximal ideals in the commutative ring R and let $I = M_1 \cap M_2$. Prove that R/I is isomorphic to the direct sum of two fields.
46. Let R be a non-zero commutative ring with 1. Show that if I is an ideal of R such that $1 + a$ is a unit in R for all $a \in I$, then I is contained in every maximal ideal of R.

47. Let R be a commutative ring with identity. Suppose R contains an idempotent element a other than 0 or 1. Show that every prime ideal in R contains an idempotent element other than 0 or 1. (An element $a \in R$ is idempotent if $a^2 = a$.)

48. Let R be a commutative ring with 1.
 (a) Prove that (x) is a prime ideal in $R[x]$ if and only if R is an integral domain.
 (b) Prove that (x) is a maximal ideal in $R[x]$ if and only if R is a field.

49. Find all values of a in \mathbb{Z}_3 such that the quotient ring

\[\mathbb{Z}_3[x]/(x^3 + x^2 + ax + 1) \]

is a field. Justify your answer.

50. Find all values of a in \mathbb{Z}_5 such that the quotient ring

\[\mathbb{Z}_5[x]/(x^3 + 2x^2 + ax + 3) \]

is a field. Justify your answer.

51. Let R be a commutative ring with identity and let U be maximal among non-finitely generated ideals of R. Prove U is a prime ideal.

52. Let R be a commutative ring with identity and let U be maximal among non-principal ideals of R. Prove U is a prime ideal.

53. Let R be a non-zero commutative ring with 1 and S a multiplicative subset of R not containing 0. Show that if P is maximal in the set of ideals of R not intersecting S, then P is a prime ideal.

54. Prove that the set of nilpotent elements of a commutative ring R is contained in the intersection of all prime ideals of R.

55. [NEW]
 Let R be a ring in which there are no non-zero nilpotent elements. Prove that every idempotent is central.

56. Let R be a non-zero commutative ring with 1.
 (a) Let S be a multiplicative subset of R not containing 0 and let P be maximal in the set of ideals of R not intersecting S. Show that P is a prime ideal.
 (b) Show that the set of nilpotent elements of R is the intersection of all prime ideals.

57. Let R be a commutative ring with identity and let $x \in R$ be a non-nilpotent element. Prove that there exists a prime ideal P of R such that $x \not\in P$.

58. Let R be a commutative ring with identity and let S be the set of all elements of R that are not zero-divisors. Show that there is a prime ideal P such that $P \cap S$ is empty. (Hint: Use Zorn’s Lemma.)
59. Let R be a commutative ring with identity and let C be a chain of prime ideals of R. Show that $\bigcup_{P \in C} P$ and $\bigcap_{P \in C} P$ are prime ideals of R.

60. Let R be a commutative ring and P a prime ideal of R. Show that there is a prime ideal $P_0 \subseteq P$ that does not properly contain any prime ideal.

61. Let R be a commutative ring with 1 such that for every x in R there is an integer $n > 1$ (depending on x) such that $x^n = x$. Show that every prime ideal of R is maximal.

62. Let R be a commutative ring with 1 in which every ideal is a prime ideal. Prove that R is a field. (Hint: For $a \neq 0$ consider the ideals (a) and (a^2).)

63. Let D be a principal ideal domain. Prove that every nonzero prime ideal of D is a maximal ideal.

64. Show that if R is a finite commutative ring with identity, then every prime ideal of R is a maximal ideal.

65. Let $R = C[0, 1]$ be the ring of all continuous real-valued functions on $[0, 1]$, with addition and multiplication defined as follows. For $f, g \in R$ and $x \in [0, 1]$,

\[
(f + g)(x) = f(x) + g(x) \\
(fg)(x) = f(x)g(x).
\]

Prove that if M is a maximal ideal of R, then there is a real number $x_0 \in [0, 1]$ such that $M = \{f \in R \mid f(x_0) = 0\}$.

66. Let R be a commutative ring with identity, and let $P \subset Q$ be prime ideals of R. Prove that there exist prime ideals P^*, Q^* satisfying $P \subseteq P^* \subset Q^* \subseteq Q$, such that there are no prime ideals strictly between P^* and Q^*. HINT: Fix $x \in Q - P$ and show that there exists a prime ideal P^* containing P, contained in Q and maximal with respect to not containing x.

67. Let R be a commutative ring with 1. An ideal I of R is called a primary ideal if $I \neq R$ and for all $x, y \in R$ with $xy \in I$, either $x \in I$ or $y^n \in I$ for some integer $n \geq 1$.

(a) Show that an ideal I of R is primary if and only if $R/I \neq 0$ and every zero-divisor in R/I is nilpotent.

(b) Show that if I is a primary ideal of R then the radical $\text{Rad}(I)$ of I is a prime ideal. (Recall that $\text{Rad}(I) = \{x \in R \mid x^n \in I$ for some $n\}$.)

Commutative Rings

68. Let R be a commutative ring with identity. Show that R is an integral domain if and only if R is a subring of a field.

69. Let R be a commutative ring with identity. Show that if x and y are nilpotent elements of R then $x + y$ is nilpotent and the set of all nilpotent elements is an ideal in R.

70. Let R be a commutative ring with identity. An ideal I of R is irreducible if it cannot be expressed as the intersection of two ideals of R neither of which is contained in the other. Show the following.

(a) If P is a prime ideal then P is irreducible.

(b) If x is a non-zero element of R, then there is an ideal I_x, maximal with respect to the property that $x \notin I_x$, and I_x is irreducible.

(c) If every irreducible ideal of R is a prime ideal, then 0 is the only nilpotent element of R.
71. Let \(R \) be a commutative ring with 1 and let \(I \) be an ideal of \(R \) satisfying \(I^2 = \{0\} \). Show that if \(a + I \in R/I \) is an idempotent element of \(R/I \), then the coset \(a + I \) contains an idempotent element of \(R \).

72. Let \(R \) be a commutative ring with identity that has exactly one prime ideal \(P \). Prove the following.
 (a) \(R/P \) is a field.
 (b) \(R \) is isomorphic to \(R_P \), the ring of quotients of \(R \) with respect to the multiplicative set \(R - P = \{s \in R \mid s \notin P\} \).

73. Let \(R \) be a commutative ring with identity and \(\sigma : R \to R \) a ring automorphism.
 (a) Show that \(F = \{r \in R \mid \sigma(r) = r\} \) is a subring of \(R \) and the identity of \(R \) is in \(F \).
 (b) Show that if \(\sigma^2 \) is the identity map on \(R \), then each element of \(R \) is the root of a monic polynomial of degree two in \(F[x] \).

74. Let \(R \) be a commutative ring with identity that has exactly three ideals, \(\{0\} \), \(I \), and \(R \).
 (a) Show that if \(a \notin I \), then \(a \) is a unit of \(R \).
 (b) Show that if \(a, b \in I \) then \(ab = 0 \).

75. Let \(R \) be a commutative ring with 1. Show that if \(u \) is a unit in \(R \) and \(n \) is nilpotent, then \(u + n \) is a unit.

76. Let \(R \) be a commutative ring with identity. Suppose that for every \(a \in R \), either \(a \) or \(1 - a \) is invertible. Prove that \(N = \{a \in R \mid a \text{ is not invertible}\} \) is an ideal of \(R \).

77. Let \(R \) be a commutative ring in which any two ideals are comparable (that is, either \(I \subseteq J \) or \(J \subseteq I \)). Prove that every finitely generated ideal of \(R \) is principal.

78. Let \(R \) be a commutative ring with 1. Show that the sum of any two principal ideals of \(R \) is principal if and only if every finitely generated ideal of \(R \) is principal.

79. Let \(R \) be an integral domain. Show that if all prime ideals of \(R \) are principal, then \(R \) is a Principal Ideal Domain.

80. Let \(R \) be a commutative ring with identity such that not every ideal is a principal ideal.
 (a) Show that there is an ideal \(I \) maximal with respect to the property that \(I \) is not a principal ideal.
 (b) If \(I \) is the ideal of part (a), show that \(R/I \) is a principal ideal ring.

81. Recall that if \(R \subseteq S \) is an inclusion of commutative rings (with the same identity) then an element \(s \in S \) is \textit{integral over} \(R \) if \(s \) satisfies some monic polynomial with coefficients in \(R \). Prove the equivalence of the following statements.
 (i) \(s \) is integral over \(R \).
 (ii) \(R[s] \) is finitely generated as an \(R \)-module.
 (iii) There exists a faithful \(R[s] \) module which is finitely generated as an \(R \)-module.

82. Recall that if \(R \subseteq S \) is an inclusion of commutative rings (with the same identity) then \(S \) is an \textit{integral} extension of \(R \) if every element of \(S \) satisfies some monic polynomial with coefficients in \(R \). Prove that if \(R \subseteq S \subseteq T \) are commutative rings with the same identity, then \(S \) is integral over \(R \) and \(T \) is integral over \(S \) if and only if \(T \) is integral over \(R \).
83. Let $R \subseteq S$ be commutative domains with the same identity, and assume that S is an integral extension of R. Let I be a nonzero ideal of S. Prove that $I \cap R$ is a nonzero ideal of R.

Domains

84. Suppose R is a domain and I and J are ideals of R such that IJ is principal. Show that I (and by symmetry J) is finitely generated.

[Hint: If $IJ = (a)$, then $a = \sum_{i=1}^{n} x_i y_i$ for some $x_i \in I$ and $y_i \in J$. Show the x_i generate I.]

85. Prove that if D is a Euclidean Domain, then D is a Principal Ideal Domain.

86. Show that if p is a prime such that there is an integer b with $p = b^2 + 4$, then $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain.

87. Show that if p is a prime such that $p \equiv 1 \pmod{4}$, then $\mathbb{Z}[\sqrt{p}]$ is not a unique factorization domain.

88. Let $D = \mathbb{Z}(\sqrt{5}) = \{m + n\sqrt{5} \mid m, n \in \mathbb{Z}\}$ — a subring of the field of real numbers and necessarily an integral domain (you need not show this) — and $F = \mathbb{Q}(\sqrt{5})$ its field of fractions. Show the following:

(a) $x^2 + x - 1$ is irreducible in $D[x]$ but not in $F[x]$.

(b) D is not a unique factorization domain.

89. Let $D = \mathbb{Z}(\sqrt{21}) = \{m + n\sqrt{21} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{21})$, the field of fractions of D. Show the following:

(a) $x^2 - x - 5$ is irreducible in $D[x]$ but not in $F[x]$.

(b) D is not a unique factorization domain.

90. Let $D = \mathbb{Z}(\sqrt{-11}) = \{m + n\sqrt{-11} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{-11})$ its field of fractions. Show the following:

(a) $x^2 - x + 3$ is irreducible in $D[x]$ but not in $F[x]$.

(b) D is not a unique factorization domain.

91. Let $D = \mathbb{Z}(\sqrt{13}) = \{m + n\sqrt{13} \mid m, n \in \mathbb{Z}\}$ and $F = \mathbb{Q}(\sqrt{13})$ its field of fractions. Show the following:

(a) $x^2 + 3x - 1$ is irreducible in $D[x]$ but not in $F[x]$.

(b) D is not a unique factorization domain.

92. Let D be an integral domain and F a subring of D that is a field. Show that if each element of D is algebraic over F, then D is a field.

93. Let R be an integral domain containing the subfield F and assume that R is finite dimensional over F when viewed as a vector space over F. Prove that R is a field.

94. Let D be an integral domain.

(a) For $a, b \in D$ define a **greatest common divisor** of a and b.

(b) For $x \in D$ denote $(x) = \{dx \mid d \in D\}$. Prove that if $(a) + (b) = (d)$, then d is a greatest common divisor of a and b.

8
95. Let D be a principal ideal domain.
 (a) For $a, b \in D$, define a least common multiple of a and b.
 (b) Show that $d \in D$ is a least common multiple of a and b if and only if $(a) \cap (b) = (d)$.

96. Let D be a principal ideal domain and let $a, b \in D$.
 (a) Show that there is an element $d \in D$ that satisfies the properties
 i. $d | a$ and $d | b$ and
 ii. if $e | a$ and $e | b$ then $e | d$.
 (b) Show that there is an element $m \in D$ that satisfies the properties
 i. $a | m$ and $b | m$ and
 ii. if $a | e$ and $b | e$ then $m | e$.

97. Let R be a principal ideal domain. Show that if (a) is a nonzero ideal in R, then there are only finitely many ideals in R containing (a).

98. Let D be a unique factorization domain and F its field of fractions. Prove that if d is an irreducible element in D, then there is no $x \in F$ such that $x^2 = d$.

99. Let D be a Euclidean domain. Prove that every non-zero prime ideal is a maximal ideal.

100. Let π be an irreducible element of a principal ideal domain R. Prove that π is a prime element (that is, $\pi | ab$ implies $\pi | a$ or $\pi | b$).

101. Let D with $\varphi : D - \{0\} \to \mathbb{N}$ be a Euclidean domain. Suppose $\varphi(a + b) \leq \max\{\varphi(a), \varphi(b)\}$ for all $a, b \in D$. Prove that D is either a field or isomorphic to a polynomial ring over a field.

102. Let D be an integral domain and F its field of fractions. Show that if g is an isomorphism of D onto itself, then there is a unique isomorphism h of F onto F such that $h(d) = g(d)$ for all $d \in D$.

103. Let D be a unique factorization domain such that if p and q are irreducible elements of D, then p and q are associates. Show that if A and B are ideals of D, then either $A \subseteq B$ or $B \subseteq A$.

104. Let D be a unique factorization domain and p a fixed irreducible element of D such that q is any irreducible element of D, then q is an associate of p. Show the following.
 (a) If d is a nonzero element of D, then d is uniquely expressible in the form up^n, where u is a unit of D and n is a non-negative integer.
 (b) D is a Euclidean domain.

105. Prove that $\mathbb{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} \mid a, b \in \mathbb{Z}\}$ is a Euclidean domain.

106. Show that the ring $\mathbb{Z}[i]$ of Gaussian integers is a Euclidean ring and compute the greatest common divisor of $5 + i$ and 13 using the Euclidean algorithm.

Polynomial Rings

107. Show that the polynomial $f(x) = x^4 + 5x^2 + 3x + 2$ is irreducible over the field of rational numbers.
108. Let \(D \) be an integral domain and \(D[x] \) the polynomial ring over \(D \). Suppose \(\varphi : D[x] \rightarrow D[x] \) is an isomorphism such that \(\varphi(d) = d \) for all \(d \in D \). Show that \(\varphi(x) = ax + b \) for some \(a, b \in D \) and that \(a \) is a unit of \(D \).

109. Let \(f(x) = a_0 + a_1 x + \cdots + a_k x^k + \cdots + a_n x^n \in \mathbb{Z}[x] \) and \(p \) a prime such that \(p \mid a_i \) for \(i = 1, \ldots, k - 1 \), \(p \nmid a_k \), \(p \nmid a_n \), and \(p^2 \nmid a_0 \). Show that \(f(x) \) has an irreducible factor in \(\mathbb{Z}[x] \) of degree at least \(k \).

110. Let \(D \) be an integral domain and \(D[x] \) the polynomial ring over \(D \) in the indeterminate \(x \). Show that if every nonzero prime ideal of \(D[x] \) is a maximal ideal, then \(D \) is a field.

111. Let \(R \) be a commutative ring with \(1 \) and let \(f(x) \in R[x] \) be nilpotent. Show that the coefficients of \(f \) are nilpotent.

112. Show that if \(R \) is an integral domain and \(f(x) \) is a unit in the polynomial ring \(R[x] \), then \(f(x) \) is in \(R \).

113. Let \(D \) be a unique factorization domain and \(F \) its field of fractions. Prove that if \(f(x) \) is a monic polynomial in \(D[x] \) and \(\alpha \in F \) is a root of \(f \), then \(\alpha \in D \).

114. Explain why \(F = \mathbb{Z}_3[x]/(x^3 + x^2 + 2) \) is a field and find the multiplicative inverse of \(x^2 + 1 \) in \(F \).

115. (a) Show that \(x^4 + x^3 + x^2 + x + 1 \) is irreducible in \(\mathbb{Z}_3[x] \).
 (b) Show that \(x^4 + 1 \) is not irreducible in \(\mathbb{Z}_3[x] \).

116. Let \(F[x, y] \) be the polynomial ring over a field \(F \) in two indeterminates \(x, y \). Show that the ideal generated by \(\{x, y\} \) is not a principal ideal.

117. Let \(F \) be a field. Prove that the polynomial ring \(F[x] \) is a PID and that \(F[x, y] \) is not a PID.

118. Let \(D \) be an integral domain and let \(c \) be an irreducible element in \(D \). Show that the ideal \((x, c) \) generated by \(x \) and \(c \) in the polynomial ring \(D[x] \) is not a principal ideal.

119. Show that if \(R \) is a commutative ring with \(1 \) that is not a field, then \(R[x] \) is not a principal ideal domain.

120. (a) Let \(\mathbb{Z} \left[\frac{1}{2} \right] = \left\{ \frac{a}{2^n} \mid a, n \in \mathbb{Z}, n \geq 0 \right\} \), the smallest subring of \(\mathbb{Q} \) containing \(\mathbb{Z} \) and \(\frac{1}{2} \).
 Let \((2x - 1) \) be the ideal of \(\mathbb{Z}[x] \) generated by the polynomial \(2x - 1 \).
 Show that \(\mathbb{Z}[x]/(2x - 1) \cong \mathbb{Z} \left[\frac{1}{2} \right] \).
 (b) Find an ideal \(I \) of \(\mathbb{Z}[x] \) such that \((2x - 1) \not\subseteq I \not\subseteq \mathbb{Z}[x] \).

Non-commutative Rings

121. Let \(R \) be a ring with identity such that the identity map is the only ring automorphism of \(R \). Prove that the set \(N \) of all nilpotent elements of \(R \) is an ideal of \(R \).

122. Let \(p \) be a prime. A ring \(S \) is called a \(p \)-ring if the characteristic of \(S \) is a power of \(p \). Show that if \(R \) is a ring with identity of finite characteristic, then \(R \) is isomorphic to a finite direct product of \(p \)-rings for distinct primes.

10
123. If \(R \) is any ring with identity, let \(J(R) \) denote the Jacobson radical of \(R \). Show that if \(e \) is any idempotent of \(R \), then \(J(eRe) = eJ(R)e \).

124. If \(n \) is a positive integer and \(F \) is any field, let \(M_n(F) \) denote the ring of \(n \times n \) matrices with entries in \(F \). Prove that \(M_n(F) \) is a simple ring. Equivalently, \(\text{End}_F(V) \) is a simple ring if \(V \) is a finite dimensional vector space over \(F \).

125. Let \(R \) be a ring.
 (a) Show that there is a unique smallest (with respect to inclusion) ideal \(A \) such that \(R/A \) is a commutative ring.
 (b) Give an example of a ring \(R \) such that for every proper ideal \(I \), \(R/I \) is not commutative. Verify your example.
 (c) For the ring \(R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\} \) with the usual matrix operations, find the ideal \(A \) of part (a).

126. A ring \(R \) is \textit{nilpotent-free} if \(a^n = 0 \) for \(a \in R \) and some positive integer \(n \) implies \(a = 0 \).
 (a) Suppose there is an ideal \(I \) such that \(R/I \) is nilpotent-free. Show there is a unique smallest (with respect to inclusion) ideal \(A \) such that \(R/A \) is nilpotent-free.
 (b) Give an example of a ring \(R \) such that for every proper ideal \(I \), \(R/I \) is not nilpotent-free. Verify your example.
 (c) Show that if \(R \) is a commutative ring with identity, then there is a proper ideal \(I \) of \(R \) such that \(R/I \) is nilpotent-free, and find the ideal \(A \) of part (a).

\textbf{Local Rings, Localization, Rings of Fractions}

127. Let \(R \) be an integral domain. Construct the field of fractions \(F \) of \(R \) by defining the set \(F \) and the two binary operations, and show that the two operations are well-defined. Show that \(F \) has a multiplicative identity element and that every nonzero element of \(F \) has a multiplicative inverse.

128. A \textit{local} ring is a commutative ring with 1 that has a unique maximal ideal. Show that a ring \(R \) is local if and only if the set of non-units in \(R \) is an ideal.

129. Let \(R \) be a commutative ring with 1 \(\neq 0 \) in which the set of nonunits is closed under addition. Prove that \(R \) is local, i.e., has a unique maximal ideal.

130. Let \(D \) be an integral domain and \(F \) its field of fractions. Let \(P \) be a prime ideal in \(D \) and \(D_P = \{ab^{-1} \mid a, b \in D, b \not\in P\} \subseteq F \). Show that \(D_P \) has a unique maximal ideal.

131. Let \(R \) be a commutative ring with identity and \(M \) a maximal ideal of \(R \). Let \(R_M \) be the ring of quotients of \(R \) with respect to the multiplicative set \(R - M = \{s \in R \mid s \not\in M\} \). Show the following.
 (a) \(M_M = \{s \mid a \in M, s \not\in M\} \) is the unique maximal ideal of \(R_M \).
 (b) The fields \(R/M \) and \(R_M/M_M \) are isomorphic.

132. Let \(R \) be an integral domain, \(S \) a multiplicative set, and let \(S^{-1}R = \{s^{-1}r \mid r \in R, s \in S\} \) (contained in the field of fractions of \(R \)). Show that if \(P \) is a prime ideal of \(R \), then \(S^{-1}P \) is either a prime ideal of \(S^{-1}R \) or else equals \(S^{-1}R \).
133. Let \(R \) be a commutative ring with identity and \(P \) a prime ideal of \(R \). Let \(R_P \) be the ring of quotients of \(R \) with respect to the set \(R - P = \{ s \in R \mid s \notin P \} \). Show that \(R_P/P_P \) is the field of fractions of the integral domain \(R/P \).

134. Let \(D \) be an integral domain and \(F \) its field of fractions. Denote by \(M \) the set of all maximal ideals of \(D \). For \(M \in M \), let \(D_M = \{ \frac{a}{s} \mid a, s \in D, s \notin M \} \subset F \). Show that \(\bigcap_{M \in M} D_M = D \).

135. Let \(R \) be a commutative ring with 1 and \(D \) a multiplicative subset of \(R \) containing 1. Let \(J \) be an ideal in the ring of fractions \(D^{-1}R \) and let

\[
I = \left\{ a \in R \mid \frac{a}{d} \in J \text{ for some } d \in D \right\}.
\]

Show that \(I \) is an ideal of \(R \).

136. Let \(D \) be a principal ideal domain and let \(P \) be a non-zero prime ideal. Show that \(D_P \), the localization of \(D \) at \(P \), is a principal ideal domain and has a unique irreducible element, up to associates.

Chains and Chain Conditions

137. Let \(R \) be a commutative ring with identity. Prove that any non-empty set of prime ideals of \(R \) contains maximal and minimal elements.

138. Let \(R \) be an integral domain that satisfies the descending chain condition; i.e., whenever \(I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots \) is a descending chain of ideals of \(R \), there exists \(m \in \mathbb{N} \) such that \(I_k = I_m \) for all \(k \geq m \). Prove that \(R \) is a field.

139. Let \(R \) be a ring satisfying the descending chain condition on right ideals. Prove that if \(R \) is not a division ring, then \(R \) contains non-trivial zero divisors.

140. Let \(R \) be a commutative ring with 1. We say \(R \) satisfies the ascending chain condition if whenever \(I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \) is an ascending chain of ideals of \(R \), there is an integer \(N \) such that \(I_k = I_N \) for all \(k \geq N \). Show that \(R \) satisfies the ascending chain condition if and only if every ideal of \(R \) is finitely generated.

141. Define Noetherian ring and prove that if \(R \) is Noetherian, then \(R[x] \) is Noetherian.

142. Let \(R \) be a commutative Noetherian ring with identity. Prove that there are only finitely many minimal prime ideals of \(R \).

143. Let \(R \) be a commutative Noetherian ring in which every 2-generated ideal is principal. Prove that \(R \) is a Principal Ideal Domain.

144. Let \(R \) be a commutative Noetherian ring with identity and let \(I \) be an ideal in \(R \). Let \(J = \text{Rad}(I) \). Prove that there exists a positive integer \(n \) such that \(j^n \in I \) for all \(j \in J \).

145. Let \(R \) be a commutative Noetherian domain with identity. Prove that every nonzero ideal of \(R \) contains a product of nonzero prime ideals of \(R \).

146. Let \(R \) be a ring satisfying the descending chain condition on right ideals. If \(J(R) \) denotes the Jacobson radical of \(R \), prove that \(J(R) \) is nilpotent.
147. Show that if R is a commutative Noetherian ring with identity, then the polynomial ring $R[x]$ is also Noetherian.

148. Let P be a nonzero prime ideal of the commutative Noetherian domain R. Assume P is principal. Prove that there does not exist a prime ideal Q satisfying $(0) < Q < P$.

149. Let R be a commutative Noetherian ring. Prove that every nonzero ideal A of R contains a product of prime ideals (not necessarily distinct) each of which contains A.

150. Let R be a commutative ring with 1 and let M be an R-module that is not Artinian (Noetherian, of finite composition length). Let \mathcal{I} be the set of ideals I of R such that there exists an R-submodule N of M with the property that N/NI is not Artinian (Noetherian, of finite composition length, respectively). Show that if $A \in \mathcal{I}$ is a maximal element of \mathcal{I}, then A is a prime ideal of R.